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Abstract. In this paper we discuss some results of the theory of holomorphic

almost periodic functions on coverings of complex manifolds, recently devel-
oped by the authors. The methods of the proofs are mostly sheaf-theoretic

which allows us to obtain new results even in the classical setting of H. Bohr’s

holomorphic almost periodic functions on tube domains.

1. Introduction

In the 1920s H. Bohr [Bo] created his famous theory of almost periodic functions
which shortly acquired numerous applications to various areas of mathematics, from
harmonic analysis to differential equations. Two branches of this theory were par-
ticularly rich on deep and interesting results: holomorphic almost periodic functions
on a complex strip [Bo, Lv] (and later on tube domains [FR]), and J. von Neumann’s
almost periodic functions on groups [N]. Holomorphic almost periodic functions on
a tube domain T = Rn + iΩ, where Ω ⊂ Rn is open and convex, arise as uniform
limits on subdomains T ′ = Rn + iΩ′, Ω′ b Ω, of exponential polynomials

z 7→
m∑
k=1

cke
i〈λk,z〉, z ∈ T, ck ∈ C, λk ∈ (Rn)∗ = Rn;

here 〈λk, ·〉 is a complex linear functional defined by λk.
A classical approach to the study of such functions employs the fact that T is

the trivial bundle with base Ω and fibre Rn (cf. characterization of almost periodic
functions in terms of their Jessen functions defined on Ω [JT, Rn, FR], proofs using
some results on almost periodic functions on R [Ln], etc.). In the present paper we
consider T as a regular covering p : T → T0 with the deck transformation group
Zn over a relatively complete Reinhardt domain T0 (e.g., complex strip covering an
annulus if n = 1). It turns out that the holomorphic almost periodic functions on T
are precisely those holomorphic functions which are von Neumann almost periodic
on each fibre p−1(z) ∼= Zn, z ∈ T0, and bounded on each subset p−1(U0), U b T .
The latter enables us to regard holomorphic almost periodic functions on T as

(a) holomorphic sections of a certain holomorphic Banach vector bundle on T0;

(b) ‘holomorphic’ functions on the fibrewise Bohr compactification of the cover-
ing, a topological space sharing some properties of a complex manifold.
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This point of view allows us to enrich the variety of techniques used in the theory
of holomorphic almost periodic functions (such as Fourier analysis-type arguments
for n = 1, cf. [Bo, Ln, Lv], arguments based on the properties of Monge-Amperé
currents for n > 1, cf. [F2R], etc.) by methods of Banach-valued complex analysis
[Bu1, L] and by algebraic-geometric methods such as Cartan Theorem B for co-
herent sheaves. Using them we obtain new results on holomorphic almost periodic
extensions from almost periodic complex submanifolds, Hartogs-type theorems, re-
covery of almost periodicity of a holomorphic function from that for its trace to
real periodic hypersurfaces, etc.

The above equivalent definitions of almost periodicity on a tube domain suggest
a natural way to define holomorphic almost periodic functions on a regular covering
p : X → X0 with a deck transformation group G of a complex manifold X0 as those
holomorphic functions on X that are von Neumann almost periodic on each fibre
p−1(z) ∼= G, z ∈ X0, and bounded on each subset p−1(U) ⊂ X, U b X0. Many
of the results known for holomorphic almost periodic functions on tube domains,
e.g., Bohr’s approximation theorem (Theorem 1.1), on some properties of almost
periodic divisors, are valid also for holomorphic almost periodic functions on regular
coverings of Stein manifolds. In fact, some of these results can be carried over
with practically the same proofs to certain algebras of holomorphic functions on X
invariant with respect to the action of the deck transformation group G.

Earlier similar methods based on the Stone-Čech compactification of fibres of a
regular covering of a complex manifold and on an analogous Banach vector bun-
dle construction were developed in [Br1] – [Br4] in connection with corona-type
problems for some algebras of bounded holomorphic functions on coverings of bor-
dered Riemann surfaces and integral representation of holomorphic functions of
slow growth on coverings of Stein manifolds. The Bohr compactification bRn + iΩ
of tube domain Rn + iΩ was used in [Fav1, Fav2] in the context of the problem of
a characterization of zero sets of holomorphic almost periodic functions among all
almost periodic divisors. It is interesting to note that already in his monograph [Bo]
H. Bohr uses equally often the aforementioned ”trivial fibre bundle” and ”regular
covering” points of view on a complex strip.

Let us recall the definitions of holomorphic almost periodic functions on tube
domains and almost periodic functions on groups.

Following S. Bochner, a holomorphic function f on a tube domain Rn + iΩ is
called almost periodic if the family of its translates {z 7→ f(z + s)}s∈R is relatively
compact in the topology of uniform convergence on tube subdomains Rn + iΩ′,
Ω′ b Ω. The Frechet algebra of holomorphic almost periodic functions endowed
with the above topology is denoted by APH(Rn + iΩ). Analogously, one defines
holomorphic almost periodic functions on a tube domain with an open relatively
compact base Ωc ⊂ Rn as holomorphic functions continuous in the closure Rn+ iΩ̄c

and such that their families of translates are relatively compact in the topology of
uniform convergence on Rn+ iΩ̄c. The Banach algebra of such holomorphic almost
periodic functions is denoted by APH(Rn + iΩc).

The following result, called the approximation theorem, is the cornerstone of
Bohr’s theory.
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Theorem 1.1 (H. Bohr). The exponential polynomials

APH0(Rn + iΩ) := spanC{ei〈λ,z〉, z ∈ Rn + iΩ}λ∈Rn ,

APH0(Rn + iΩc) := spanC{ei〈λ,z〉, z ∈ Rn + iΩc}λ∈Rn

are dense in APH(Rn + iΩ) and APH(Rn + iΩc), respectively.

J. von Neumann’s almost periodic functions on a topological group G, originally
introduced in connection with Hilbert’s fifth problem on characterization of Lie
groups among all topological groups, are obtained as limits of linear combinations
of the form

t 7→
m∑
k=1

ckσ
k
ij(t), t ∈ G, ck ∈ C, σk = (σkij),

where σk (1 ≤ k ≤ m) are finite-dimensional irreducible unitary representations of
G.
The intrinsic definition of almost periodic functions on G is as follows. Let Cb(G)
be the algebra of bounded continuous C-valued functions on G endowed with sup-
norm. A function f ∈ Cb(G) is called almost periodic if its translates {t 7→
f(st)}s∈G and {t 7→ f(ts)}s∈G are relatively compact in Cb(G). It was later proved
in [Ma] that the relative compactness of either the left of the right family of trans-
lates already gives the von Neumann definition of almost periodicity.

Let AP (G) ⊂ Cb(G) be the uniform subalgebra of all almost periodic functions
on G, and AP0(G) be the linear hull over C of matrix entries of finite-dimensional
irreducible unitary representations of G.

Theorem 1.2 (J. von Neumann). AP0(G) is dense in AP (G).

In what follows, we assume that finite-dimensional irreducible unitary repre-
sentations of G separate points of G. Following von Neumann, such groups are
called maximally almost periodic. Equivalently, G is maximally almost periodic
iff it admits a monomorphism into a compact topological group. Any residually
finite group, i.e., a group such that the intersection of all its finite index normal
subgroups is trivial, belongs to this class. In particular, finite groups, free groups,
finitely generated nilpotent groups, pure braid groups, fundamental groups of three
dimensional manifolds are maximally almost periodic.

In the paper we study the holomorphic almost periodic functions on a regular
covering p : X → X0 of a complex manifold X0 whose deck transformation group
π1(X0)/p∗π1(X) is maximally almost periodic; here π1(X0) stands for the funda-
mental group of X0. We will prove only several basic results related to the above
characterizations (a) and (b) of holomorphic almost periodic functions on regular
coverings of complex manifolds, to the Liouville property for holomorphic almost
periodic functions on regular coverings of ultraliouville complex manifolds, and to
extensions of holomorphic almost periodic functions from almost periodic complex
submanifolds in the case of almost periodic complex hypersurfaces. We refer to
[BrK2] for the complete exposition with detailed proofs. Some results of this paper
are presented in [BrK3].
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2. Holomorphic almost periodic functions

Let X be a complex manifold with a free and properly discontinuous left holo-
morphic action of a discrete maximally almost periodic group G. It follows that the
orbit space X0 := X/G is also a complex manifold and the projection p : X → X0

is holomorphic. In particular, if X is connected, then p : X → X0 is a regular
covering with deck transformation group G.

We denote by O(X) the algebra of holomorphic functions on X.

Definition 2.1. A function f ∈ O(X) is called almost periodic if for each point
X there exists a G-invariant open subset U containing this point, such that the
family of translates {z 7→ f(g · z), z ∈ U}g∈G is relatively compact in the topology
of uniform convergence on U .

This definition is a variant of definition in [W] (with G being the group of all
biholomorphic automorphisms of X). An equivalent definition of a holomorphic
almost periodic function is as follows.

Let Fx := p−1(x). Since Fx is discrete and G acts of Fx freely and transitively,
we can define the algebra AP (Fx) of continuous almost periodic functions on Fx so
that AP (Fx) ∼= AP (G) (cf. the above cited result of [Ma]).

Definition 2.2. A function f ∈ O(X) is called almost periodic if each x ∈ X0

has a neighbourhood Ux b X0 such that the restriction f |p−1(Ux) is bounded, and
f |Fx ∈ AP (Fx).

We establish equivalence of Definitions 2.1 and 2.2 in Proposition 5.4.
The algebra of almost periodic functions on X, endowed with the topology of

uniform convergence on subsets p−1(U0), U0 b X0, is denoted by OAP (X). This is
a Frechet algebra (i.e., it is complete). Note also that if G is finite, then OAP (X) =
O(X).

In what follows, the complex manifold X is assumed to be connected.
If the complex manifold X0 is Stein, then OAP (X) separates the points on X.

(The latter follows from the maximal almost periodicity of group G and Theorem
3.6 below.) In contrast, we have the following result.

The complex manifold X0 is called ultraliouville if there are no non-constant
bounded continuous plurisubharmonic functions on X0 [Lin]. (Recall that an upper-
semicontinuous function f : X0 → [−∞,∞) is called plurisubharmonic if for any
holomorphic map q : D→ Y , where D ⊂ C is the open unit disk, the pullback q∗f
is subharmonic on D.) In particular, compact complex manifolds and their Zariski
open subsets are ultraliouville.

Theorem 2.3. (1) Suppose that the complex manifold X0 is ultraliouville. Then
all bounded holomorphic almost periodic functions in OAP (X) are constant. In
particular, if X0 is a compact complex manifold, then OAP (X0) ∼= C.

Let n := dim X0 ≥ 2, p : X → X0 be a covering as above and X̃0 := X0 \D0,

where D0 b X0 is a (possibly empty) subdomain such that X̃ := p−1(X̃0) is
connected.

(2) Suppose that X0 is ultraliouville and D0 has a connected piecewise smooth
boundary and is contained in an open Stein submanifold of X0.

Then all bounded holomorphic almost periodic functions in OAP (X̃) are con-
stant.
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For instance, consider the universal covering p : D→ C \ {0, 1} of doubly punc-
tured complex plane (here the deck transformation group is free group with two
generators). Although there are plenty of non-constant bounded holomorphic func-
tions on D, all bounded holomorphic almost periodic functions on D corresponding
to this covering are constant because C \ {0, 1} is ultraliouville.

One can deduce from Theorem 2.3 that the algebra OAP (X) for X0 a holomor-
phically convex manifold is obtained as the pullback of the algebra OAP (Y ), where
Y is a regular covering of the Stein reduction Y0 of X0 with a maximally almost
periodic deck transformation group which is a factor-group of the deck transforma-
tion group of the covering X → X0. (Recall that Y0 is a normal Stein space and
there exists a proper surjective holomorphic map X0 → Y0 with connected fibres.
The algebra OAP (Y ) in this case is defined akin to Definitions 2.1 or 2.2.) Thus it
is natural to study holomorphic almost periodic functions on regular coverings X
of normal Stein spaces X0. In what follows we assume that X0 is a Stein manifold.
Some of our results are also valid for X0 being a normal Stein space.

We also consider almost periodic functions on closed sets of the form D̄ :=
p−1(D̄0) ⊂ X, where D0 is a relatively compact subdomain of X0.

Definition 2.4. A function f ∈ O(D) ∩ C(D̄) is almost periodic if it is bounded
on D and f |Fx ∈ AP (Fx) for all x ∈ D̄0.

The algebra of almost periodic holomorphic functions on D̄, endowed with sup-
norm is denoted by AAP (D). It follows from the definition that AAP (D) is a
Banach algebra.

Unless specified otherwise, we assume that D0 is strictly pseudoconvex; here
and below any strictly pseudonconvex domain is assumed to have a C2-smooth
boundary (we refer to [GR] for the corresponding definitions). Since for each point
x ∈ ∂D there exist a neighbourhood U ⊂ X of x and a neighbourhood U0 ⊂ X0 of
p(x) ∈ ∂D0 such that p|U : U → U0 is a biholomorphism, the set D = p−1(D0) is
strictly pseudoconvex in X.

Example 2.5. (1) In the classical case of holomorphic almost periodic functions
on a tube domain T := Rn + iΩ ⊂ Cn with Ω ⊂ Rn open and convex, we consider
T as a regular covering with deck transformation group Zn of a domain T0 b Cn;
here the covering map p : T → T0 (:= p (T )) is defined by the formula

p(z) :=
(
e2πiz1 , . . . , e2πizn

)
, z = (z1, . . . , zn) ∈ T.

Then T0 is a pseudoconvex subset of Cn (i.e., T0 is a Stein manifold).
Analogously, we define covering p : T s → T s0 (:= p (T s)), where T s := Rn + iΩc,

Ωc b Rn is open and strictly convex with C2-smooth boundary. Then T s0 is a
strictly pseudoconvex subset of Cn.

It is also easy to see that T0 and T s0 are relatively complete Reinhardt domains
in Cn (see [S]).

Further, inclusions APH(Rn + iΩ) ⊂ OAP (T ) and APH(Rn + iΩc) ⊂ AAP (T s)
are obvious. The opposite inclusions follow, e.g., from Theorem 3.1 and Example
3.3 below. (See also [BrK1] for their proof.)

(2) Let X0 be a non-compact Riemann surface, p : X → X0 be a regular covering
with a maximally almost periodic deck transformation group G (for instance, X0

is hyperbolic, then X = D is its universal covering, and G = π1(X0) is a free
(not necessarily finitely generated) group). The functions in OAP (X) arise, e.g.,
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as linear combinations over C of matrix entries of fundamental solutions of certain
linear differential equations on X. Indeed, a unitary representation σ : G → Un
can be obtained as the monodromy of the system dF = ωF on X0, where ω is
a holomorphic 1-form on X0 with values in the space of n × n complex matrices
Mn(C) (see, e.g., [For]). In particular, the pulled back system dF = (p∗ω)F on X
admits a global solution F ∈ O

(
X,GLn(C)

)
such that F ◦ g−1 = Fσ(g) (g ∈ G).

By definition, a linear combination of matrix entries of F is an element of OAP (X).

3. Approximation theorems. Extension from periodic sets

In this section we study function-theoretic properties of holomorphic almost pe-
riodic functions. Our proofs are based on an equivalent description of holomorphic
almost periodic functions on X as holomorphic sections of a holomorphic Banach
vector bundle over the Stein manifold X0 (see Section 3.3 below).

3.1. First, we describe an extension of Bohr’s approximation theorem (Theorem
1.1).

Let RG be the set of finite dimensional irreducible unitary representations of
group G. For a given σ ∈ RG we denote by Oσ(X) and Aσ(D) the C-linear hulls of
coordinates of vector-valued functions f in O(X,Cn) and A(D,Cn), respectively,
having the property that fg = σ(g)f for all g ∈ G. (Here fg(z) := f(g · z), z ∈ X.)
Further, let O0(X) and A0(D) be C-linear hulls of spaces Oσ(X) and Aσ(D),
respectively, with σ varying over the set RG.

Theorem 3.1. O0(X) is dense in OAP (X).

Recall that a Banach space A is said to have the approximation property if for any
ε > 0 and any relatively compact subset K ⊂ A there exists a finite rank bounded
linear (approximating) operator S = Sε,K ∈ L(A,A) such that ‖x − Sx‖A < ε for
all x ∈ K.

For example, algebra AP (G) has the approximation property with approximat-
ing operators in L(AP (G), AP0(G)).

If T is a compact Hausdorff topological space, A is a closed subspace of C(T ), B
is a Banach space (here and below all Banach spaces are complex) and AB ⊂ CB(T )
is the space of continuous B-valued functions f such that for any ϕ ∈ B∗ one has
ϕ(f) ∈ A, then A has the approximation property if and only if B ⊗ A is dense in
AB , see [G].

Theorem 3.2. The space AAP (D) has the approximation property with approxi-
mating operators in L

(
AAP (D),A0(D)

)
. In particular, A0(D) is dense AAP (D).

In the following example we show that for almost periodic holomorphic functions
on a tube domain Theorems 3.1 and 3.2 imply Theorem 1.1.

Example 3.3. (1) For a tube domain T ⊂ Cn consider the covering p : T → T0 of
Example 2.5(1). Let us show that the subspace of exponential polynomials

z 7→
m∑
k=1

cke
i〈λk,z〉, z ∈ T, ck ∈ C, λk ∈ Rk,

is dense in O0(T ) (a similar result with an analogous proof is valid for algebra
AAP (D)). Indeed, since group G := Zn is free Abelian, all irreducible unitary
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representations of G are one-dimensional and given by the formulas σλ(l) := ei〈λ,l〉,
l ∈ Zn for λ ∈ Rn. We define

eλ(z) := ei〈λ,z〉, z ∈ T.

Then eλ ∈ Oσλ(T ) and for any h ∈ Oσλ(T ) there exists a function h̃ ∈ O(T0)

such that h/eλ = p∗h̃. By definition, for an f ∈ O0(T ) there exist functions
hk ∈ Oσλk (T ) (1 ≤ k ≤ m) such that

f(z) =

m∑
k=1

ckhk(z), z ∈ T, ck ∈ C.

Therefore,

(3.1) f(z) =

m∑
k=1

ck(p∗h̃k)(z)eλk(z), z ∈ T.

Since the base T0 of the covering is a relatively complete Reinhardt domain, func-
tions h̃k admit expansions into Laurent series (see, e.g., [S])

h̃k(z) =

∞∑
|`|=−∞

b`z
`, z ∈ T0, b` ∈ C,

where ` = (`1, . . . , `n), |`| = `1 + · · · + `n. Therefore, p∗h̃k admit approximations
by finite sums

M∑
|`|=−M

bje
2πi〈`,z〉, z ∈ T,

uniformly on subsets p−1(W0) ⊂ T , W0 b T0. Together with (3.1) this implies the
required.

(2) In the setting of Example 2.5(2), given an irreducible unitary representation
σ : G→ Un we consider a function F ∈ O(X,GLn(C)) such that F ◦ g−1 = Fσ(g),
g ∈ G, and a function f ∈ O(X,Cn) such that f ◦ g = σ(g)f (i.e., with coordinates

lying in Oσ(X)). It follows that there exists a function f̃ ∈ O(X0,Cn) such that

Ff = p∗f̃ . Therefore all functions in Oσ(X) are obtained as C-linear combinations

of coordinates of vector-valued functions of the form F−1(p∗f̃) with f̃ ∈ O(X0,Cn).
Note that entries of F−1 are the same as for (F>)−1 satisfying (F>)−1 ◦ g−1 =
(F>)−1(σ(g)>)−1, g ∈ G, where (σ>)−1 is an irreducible unitary representation of
G as well.

Let [RG] be the set of equivalence classes of irreducible representations G →
Un, n ∈ N. For each class [σ] ∈ [RG] representing σ : G → Un we fix an
F[σ] ∈ O(X,GLn(C)) satisfying F[σ] ◦ g−1 = F[σ]σ(g), g ∈ G. Further, con-
sider an at most countable subset A ⊂ O(X0) such that the complex algebra
generated by A is dense in O(X0) (e.g., in the case X0 = {z ∈ C : |w(z)| <
1, w is holomorphic in a neighbourhood of X0} b C is an analytic polyhedron, we
may take A = {w}). Then the products of matrix entries of F[σ], [σ] ∈ [RG], with
functions in p∗A may be viewed as analogs of exponential polynomials of Exam-
ple 3.3(1). The C-linear hull generated by these functions is dense in Oσ(X). (A
similar result is valid for AAP (D).)
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3.2. Next, we formulate our results on holomorphic almost periodic extension.

Definition 3.4. A subset Y ⊂ X of the form Y = p−1(Y0), where Y0 ⊂ X0, is
called periodic.

(This terminology comes from Example 2.5(1) where a periodic subset of a tube
domain T ⊂ Cn is (2π, . . . , 2π)-periodic with respect to the natural action of group
Rn on T by translations.)

We consider a complete path metric d on X0 with an associated (1, 1)-form
obtained, e.g., as the restriction of the Hermitian (1, 1)-form on C2n+1 to X0, where
X0 is regarded as a closed submanifold of C2n+1 [St]. For a simply connected subset
W0 ⊂ X0 we naturally identify p−1(W0) with W0 ×G.

Definition 3.5. A continuous function f on a periodic set Y ⊂ X is called almost
periodic if it is bounded and uniformly continuous on subsets p−1(V0) ∼= V0 × G,
where V0 := U0 ∩ Y0 and U0 b Y0 is a simply connected coordinate chart on X0,
with respect to the semi-metric d′ on p−1(U0) defined by

d′((z1, g), (z2, g)) := d(z1, z2), (z1, g), (z2, g) ∈ p−1(U0) (∼= U0 ×G),

and f |p−1(x) ∈ AP (Fx) for all x ∈ Y0.
If, in addition Y0 := p(Y ) is a complex analytic subspace of X0 and f ∈ O(Y )

satisfies the above properties, it is called holomorphic almost periodic.

We denote by CAP (Y ) and OAP (Y ) the algebras of continuous and holomorphic
almost periodic functions on Y .

Theorem 3.6. Let M0 be a closed complex submanifold of X0 (so that M :=
p−1(M0) is a closed complex submanifold of X).

(1) For every function f ∈ OAP (M) there exists a function F ∈ OAP (X) such
that F |M = f .

Suppose that M0 is a complex submanifold of a neighbourhood of the closure of
a strictly pseudoconvex domain D0 b Cn. Let AAP (D∩M), D := p−1(D0), be the
algebra of holomorphic almost periodic functions in D ∩M continuous on D̄ ∩M
endowed with the sup-norm.

(2) For every function f ∈ AAP (D ∩M) there is a function F ∈ AAP (D) such
that F |D∩M = f .

The following result shows that almost periodicity of a holomorphic function can
be recovered from that for its trace to real periodic hypersurfaces.

Theorem 3.7. Let S0 ⊂ X0, S := p−1(S0), be a piecewise smooth real hypersur-
face. Suppose f ∈ O(X) is such that f |S ∈ CAP (S) and f is bounded on subsets
W = p−1(W0), W0 b X0. Then f ∈ OAP (X).

The classical result of Bohr’s theory of holomorphic almost periodic functions on
complex strip T := R+ i(a, b) ⊂ C states that if a function f ∈ O(T ) is bounded on
closed substrips and is almost periodic on a horizontal line in T , then f ∈ OAP (Σ)
(see, e.g, [Ln]). It follows from Theorem 3.7 that the horizontal line can be replaced
here by any real periodic piecewise smooth curve. In fact, a similar result holds if
S0 is a uniqueness set for the space O(X0), e.g., if S0 is a generic CR submanifold
of X0 of real codimension ≤ n, see [BrK2].



HOLOMORPHIC ALMOST PERIODIC FUNCTIONS ON COVERINGS 9

We use a result in [Br3] and an argument similar to the one in the proof of The-
orem 3.7 to obtain the following Hartogs-type theorem. Suppose n = dim(X0) ≥ 2.
Let S0 ⊂ X0 be a smooth real hypersurface, S := p−1(S0). We say that a function
f ∈ CAP (S) satisfies tangential CR equations on S if∫

S

f ∂̄ω = 0

for all C∞-smooth (n, n− 2)-forms ω on X having compact supports in X0.

Theorem 3.8. Let n = dim(X0) ≥ 2, and D0 b X0 be a subdomain with a
connected piecewise smooth boundary S0; then S := p−1(S0) is the boundary of
D. Suppose that f ∈ CAP (S) satisfies tangential CR equations on S. Then there
exists a function F ∈ AAP (D) such that F |S = f .

The result can be applied, e.g., to tube domains T := Rn+iΩ ⊂ Cn, n ≥ 2, where
Ω b Rn is a domain with piecewise-smooth boundary ∂Ω, and to continuous almost
periodic functions on the boundary ∂T := Rn + i∂Ω of T satisfying tangential CR
equations there. Then every such a function admits a continuous extension to a
function from AAP (T ).

3.3. Our proofs of the results above are based on an equivalent presentation of
holomorphic almost periodic functions on X as holomorphic sections of a holomor-
phic Banach vector bundle on the manifold X0 (see Proposition 3.9) defined as
follows.

The regular covering p : X → X0 is a principal fibre bundle with structure
group G. By definition, given a cover (Uγ)γ∈Γ of X0 by simply connected open sets
Uγ b X0 there exists a locally constant cocycle {cδγ : Uγ ∩ Uδ → G, γ, δ ∈ Γ}, so
that the covering p : X → X0 can be obtained from the disjoint union tγ∈ΓUγ ×G
by the identification

Uδ ×G 3 (x, g) ∼ (x, g · cδγ(x)) ∈ Uγ ×G for all x ∈ Uγ ∩ Uδ, γ, δ ∈ Γ.

Here projection p is induced by the projections Uγ ×G→ Uγ .

The algebra AP (G) is isomorphic to the algebra C(bG) of continuous functions
on bG, a compact group called the Bohr compactification ofG. SinceG is maximally
almost periodic, G is a dense subgroup of bG (see Section 4.2 for details).

We define a holomorphic Banach vector bundle p̃ : CX → X0 to be the associated
bundle to the principal fibre bundle p : X → X0, having fibre C(bG). By definition,
CX is obtained from the disjoint union tγ∈ΓUγ × C(bG) by the identification

Uδ × C(bG) 3 (x, f(ω)) ∼ (x, f(ω · cδγ(x))) ∈ Uγ × C(bG) for all x ∈ Uγ ∩ Uδ,
where γ, δ ∈ Γ. The projection p̃ is induced by projections Uγ × C(bG)→ Uγ .

Let O(CX) be the set of (global) holomorphic sections of CX. It forms a Frechet
algebra with respect to the usual pointwise operations and the topology of uniform
convergence on compact subsets of X0.

Analogously, we define the Banach vector bundle CD, and denote by A(CD)
the algebra of continuous sections of CD over D̄0 holomorphic in D0. It forms a
Banach algebra with respect to the usual pointwise operations and sup-norms on
the base and fibres.

Proposition 3.9. OAP (X) ∼= O(CX), AAP (D) ∼= A(CD).
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For example, to prove Theorem 3.6(1), let us note that algebra OAP (M) is
isomorphic to the algebra O(CX)|M0

of holomorphic sections of the bundle CX
over M0. By the result in [L] there exist holomorphic Banach vector bundles p1 :
E1 → X0 and p2 : E2 → X0 with fibres B1 and B2, respectively, such that E2 =
E1⊕CX (the Whitney sum) and E2 is holomorphically trivial, i.e., E2

∼= X0×B2.
Thus, any holomorphic section of E2 can be naturally identified with a B2-valued
holomorphic function on X0. By q : E2 → CX and ι : CX → E2 we denote
the corresponding quotient and embedding homomorphisms of the bundles so that
q ◦ ι = Id. (Similar identifications hold for bundle CD.) For a given function

f ∈ O(CX)|M0
consider its image f̃ := ι(f), a B2-valued holomorphic function on

M0, and apply to it the Banach-valued extension result in [Bu2] asserting existence

of a function F̃ ∈ O(X0, B2) such that F̃ |M0
= f̃ . Finally, we define F := q(F̃ ).

3.4. The results of Section 3.2 are valid for some subsets of X that are almost
periodic (in the sense that will be made precise later). For instance, suppose that
we are in the setting of Example 2.5(1) of holomorphic almost periodic functions
on the covering p : T → T0, where T is a tube domain. If we consider a different
covering map pλ : T → T0λ (:= pλ(T )),

(3.2) pλ(z1, . . . , zn) :=
(
eλiz1 , . . . , eλizn

)
, z = (z1, . . . , zn) ∈ T, λ > 0,

then we obtain the same algebra OAP (T ). Thus, the assertion of Theorem 3.6 is
true also for those almost periodic subsets of T that are periodic (in the sense of
the definition of Section 3.2) with respect to covering maps pλ, λ > 0. (In fact it is
true even for sufficiently small almost periodic holomorphic perturbations of such
sets, see details in [BrK2].)

In the next section we develop an approach that allows us to extend Theorem
3.6 to a subclass of almost periodic complex submanifolds of X. Unlike periodic
submanifolds of X, the almost periodic submanifolds are defined in terms of algebra
OAP (X).

4. Almost periodic complex submanifolds

4.1. The main result of this section is Theorem 4.1.

We start with the definition of a certain subclass of almost periodic complex
submanifolds in X (defined in full generality in Section 4.2).

A complex submanifold Y ⊂ X of codimension k ≤ n is called cylindrical almost
periodic if for each point x ∈ X0 there exist a simply connected coordinate chart
U0 ⊂ X0 of p(x) and functions h1, . . . , hk ∈ OAP (U), U := p−1(U0) ∼= U0×G, such
that

(1) Y ∩ U = {y ∈ U : h1(y) = · · · = hk(y) = 0};
(2) the maximum of moduli of determinants of all k × k submatrices of the

Jacobian matrix
(
∂hi(z, g)/∂zj

)
1≤i≤k, 1≤j≤n with (z, g) ∈ U of the map h =

(h1, . . . , hk) : U → Cn are uniformly bounded away from zero on Y ∩ U ; here
z = (z1, . . . , zn) are local coordinates on U0.

The simplest example of such Y is the zero set of a function h ∈ OAP (X) such
that |∇h(x)| ≥ δ, x ∈ X, for some δ > 0; here ∇h is defined by differentiation
with respect to local coordinates lifted from X0. Other examples include periodic
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complex submanifolds of X and their sufficiently small almost periodic holomorphic
perturbations and, in the case of a tube domain T , finite unions of non-intersecting
complex submanifolds periodic with respect to the action of group Rn on T by
translations and having different periods.

We say that a function f on Y is holomorphic almost periodic if f ∈ O(Y ) and
admits an extension to a continuous almost periodic function on X. The algebra of
holomorphic almost periodic on Y functions is denoted by OAP (Y ) (see Definition
4.11 for an intrinsic definition of functions from OAP (Y )).

For instance, for a function f ∈ O(Y ) assume that there exist an open cover
(U0α)α∈Λ of X0 and functions fα ∈ OAP (Uα), Uα := p−1(U0α), such that f |Uα∩Y =
fα|Uα∩Y . Then f ∈ OAP (Y ).

Theorem 4.1. Suppose that Y ⊂ X is a cylindrical almost periodic submanifold.
Let f ∈ OAP (Y ). Then there exists a function F ∈ OAP (X) such that F |Y = f .

For instance, in the setting of Example 2.5(1) of holomorphic almost periodic
functions on a tube domain T , suppose that Y1, Y2 ⊂ T are non-intersecting smooth
complex hypersurfaces that are periodic with respect to the action of Rn on T by
translations and have different periods, and f1 ∈ O(Y1), f2 ∈ O(Y2) are holo-
morphic periodic with respect to these periods functions. Then there exists a
holomorphic almost periodic function F ∈ OAP (T ) such that F |Yi = fi, i = 1, 2.

Our proof of Theorem 4.1 uses an equivalent presentation of holomorphic almost
periodic functions as ‘holomorphic’ functions on the fibrewise Bohr compactification
bX of the covering p : X → X0 introduced in the next section. In Section 5 we
outline the proof of Theorem 4.1 for cylindrical almost periodic hypersurfaces (see
[BrK2] for the proof of the general case).

4.2. In this section we define the fibrewise Bohr compactification pb : bX → X0 of
the regular covering p : X → X0.

1. Preliminaries on the Bohr compactification of a group.

The Bohr compactification bG of a topological group G is a compact topological
group together with a homomorphism j : G → bG determined by the universal
property

G

H

ν

��

G bG
j // bG

H

η

��

here H is a compact topological group, and ν is a (continuous) homomorphism.
Applying this to H := Un, n ≥ 1, we obtain that G is maximally almost periodic
iff j is an embedding.

The universal property implies that there exists a bijection between sets of finite-
dimensional irreducible unitary representations of G and bG. It turn, the Peter-
Weyl theorem for C(bG) and von Neumann’s approximation theorem for AP (G)
(Theorem 1.2) yield that AP (G) ∼= C(bG). Thus bG is homeomorphic to the
maximal ideal space of algebra AP (G), and j(G) is dense in bG.
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Example 4.2. The Bohr compactification bZ of integers Z is the inverse limit of
a family of compact Abelian Lie groups Tk × ⊕ml=1Z/(nlZ), k,m, nl ∈ N, where
Tk := (S1)k is the real k-torus. In particular, bZ is disconnected and has infinite
covering dimension.

The projections (homomorphisms) bZ→ Tk×⊕ml=1Z/(nlZ) are defined by finite
families of characters Z → S1. For instance, let λ1, λ2 ∈ R \ Q be linearly inde-
pendent over Q and χλi : Z→ S1, χλi(n) := e2πiλin, i = 1, 2, be the corresponding
characters. Then the map (χλ1

, χλ2
) : Z→ T2 is extended by continuity to a con-

tinuous surjective homomorphism bZ → T2. If λ1, λ2 are linearly dependent over
Q, then the corresponding extended homomorphism has image in T2 isomorphic to
S1 × Z/(mZ) for some m ∈ N.

The right action of G on itself extends uniquely to a (right) action r of G on bG
given by the formula r(g)(ω) := ω · j(g−1), ω ∈ bG, g ∈ G.

Let Υ ⊂ bG be a set of representatives of equivalence classes bG/j(G). Each
element ξ ∈ Υ determines a homomorphism (monomorphism if G is maximally
almost periodic) jξ : G → bG, jξ(g) := ξ · j(g−1), g ∈ G. In particular, if ξ = 1,
then jξ = j. Since j(G) is dense in bG and bG is a group, jξ(G) is dense in bG for
all ξ ∈ Υ; it is also clear that jξ(G) ∩ jξ′(G) = ∅ for ξ 6= ξ′, and bG is covered by
subsets jξ(G), ξ ∈ Υ.

2. Fibrewise Bohr compactification of the covering.

We retain the notation of Section 3.3. Consider the fibre bundle pb : bX → X0

with fibre bG associated to the bundle p : X → X0. By definition, bX is obtained
from the disjoint union tγ∈ΓUγ × bG by the identification of (x, ω) ∈ Uγ × bG
with (x, ω · cδγ(x)) ∈ Uδ × bG. The bundle bX will be called the fibrewise Bohr
compactification of X.

Let ξ ∈ Υ. Each embedding jξ (recall that G is maximally almost periodic)
induces local embeddings Uγ × G ↪→ Uγ × bG which, in turn, induce a global
embedding ιξ : X ↪→ bX. Thus bX = tξ∈Υ ιξ(X) and each ιξ(X) is dense in bX.

We define the fibrewise Bohr compactification bD̄ of the covering p : D̄ → D̄0,
D0 b X0 is a domain, analogously. Spaces bX and bD̄ with a strictly pseudoconvex
D0 are maximal ideal spaces of algebras OAP (X) and AAP (D), respectively, see
[BrK2] for details.

Definition 4.3. A function f ∈ C(bX) is called holomorphic if ι∗ξf ∈ O(X) for all

ξ ∈ Υ. We denote by O(bX) the algebra of holomorphic functions on bX endowed
with the topology of uniform convergence on compact subsets of bX.

A function f ∈ C(bD̄) is called holomorphic if ι∗ξf ∈ O(D)∩C(D̄) for all ξ ∈ Υ.

The algebra of these functions equipped with sup-norm is denoted by A(bD).

In fact, we prove that it suffices to require that the above f satisfies ι∗ξf ∈ O(X)

or O(D) ∩ C(D̄) for some ξ ∈ Υ to get f ∈ O(bX) or A(bD).
The next proposition gives another characterization of holomorphic almost pe-

riodic functions.

Proposition 4.4. OAP (X) ∼= O(bX), AAP (D) ∼= A(bD).

Since each ιξ is a continuous map, ι−1
ξ (U) ⊂ X is open for an open U ⊂ bX.

Definition 4.5. A function f ∈ C(U) is called holomorphic if ι∗ξf ∈ O
(
ι−1
ξ (U)

)
for all ξ ∈ Υ.
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Let O(U) denote the algebra of holomorphic on U functions. Clearly a function
f ∈ C(bX) belongs to O(bX) if and only if each point in bX has a neighbourhood
U such that f |U ∈ O(U).

For U ⊂ bX open, by UO we denote the sheaf of germs of holomorphic functions
on U .

Given a sheaf of modules F on bX over the sheaf of rings bXO by Hi(bX,F),
i ≥ 0, we denote the Čech cohomology groups of bX with values in F . As usual,
H0(bX,F) is naturally identified with the module Γ(bX,F) of global sections of F .
We say that the sheaf F is coherent if each point in bX has a neighbourhood of the
form U := p−1

b (U0) with U0 ⊂ X0 open over which there exists an exact sequence
of sheaves

(4.3) 0→ (bXO)mk |U → · · · → (bXO)m1 |U → (bXO)m0 |U → F|U → 0.

Theorem 4.6 (Cartan Theorem B). If F is coherent, then Hi(bX,F) = 0, i ≥ 1.

We require also the following

Definition 4.7. A continuous rank k complex vector bundle E on bX is called
holomorhic if ι∗ξE is a holomorphic vector bundle on X for each ξ ∈ Υ.

In fact, in this definition it suffices to take only one such ξ ∈ Υ. Also, one easily
shows that each such E is determined on an open cover of bX by a holomorphic
1-cocycle (in the sense of Definition 4.5) with values in GLk(C).

Similarly one defines holomorphic sections and (holomorphic) homomorphisms
of holomorphic bundles on bX.

In the following definition for a simply connected open set U0 ⊂ X0 we naturally
identify p−1

b (U0) with U0 × bG.

Definition 4.8. A closed subset Z ⊂ bX is called an almost periodic complex
submanifold of codimension k if for each point x ∈ bX there exist its neighbourhood
U = U0 ×K ⊂ bX, where U0 ⊂ X0 is open simply connected and K ⊂ bG is open,
and functions h1, . . . , hk ∈ O(U) such that

(1) Z ∩ U = {x ∈ U : h1(x) = · · · = hk(x) = 0};

(2) for each ω ∈ K the rank of the map z 7→
(
h1(z, ω), . . . , hk(z, ω)

)
is k at each

point of U0.

In the case the codimension of Z is k = 1, then Z is called an almost periodic
complex hypersurface.

Any almost periodic complex submanifold Z ⊂ bX satisfies the following prop-
erties:

(i) For each ξ ∈ Υ the set ι−1
ξ

(
Z ∩ ιξ(X)

)
⊂ X is a (smooth) complex submani-

fold;

(ii) For each ξ ∈ Υ the set Z ∩ ιξ(X) is dense in Z.

Definition 4.9. An almost periodic complex submanifold Z is called cylindrical if
the sets U in Definition 4.8 have form U := p−1

b (U0).

Let Z ⊂ bX be an almost periodic complex hypersurface. Then it suffices to
require that at least one set U in Definition 4.8 has form U = p−1

b (U0) for some
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open U0 ⊂ X0 in order for the almost periodic hypersurface Z to be cylindrical (see
Theorem 4.18 below).

A subset Y := ι−1
ξ

(
Z∩ιξ(X)

)
⊂ X, where Z ⊂ bX is an almost periodic complex

submanifold, will be called an almost periodic complex submanifold of X. If Z is
cylindrical, then Y will be called a cylindrical almost periodic submanifold of X.
(This definition is equivalent to the one given in Section 4.1).) Note that even a
complex strip contains non-cylindrical almost periodic complex submanifolds, see
Section 4.4.

Definition 4.10. Let Z ⊂ bX be an almost periodic complex submanifold. A
function f ∈ C(Z) is called holomorphic if the functions ι∗ξf |ι−1

ξ (Z∩ιξ(X)), ξ ∈ Υ,

are holomorphic in the usual sense (cf. (i) above).
The algebra of functions holomorphic on Z is denoted by O(Z).

Definition 4.11. For a given ξ ∈ Υ we set Y := ι−1
ξ (Z) ⊂ X, and define the

algebra of holomophic almost periodic functions on Y as

OAP (Y ) := ι∗ξO(bX).

One can easily see (using a normal family argument and the Tietze-Urysohn
extension theorem) that this definition is equivalent to the one given in Section 4.1).

Our proof of Theorem 4.1 is based on Theorem 4.6 and the fact that the sheaf of
germs of holomorphic functions vanishing on a cylindrical almost periodic complex
submanifold of bX is coherent. It is not yet clear whether the assertion of Theorem
4.1 holds for all almost periodic complex submanifolds of X.

Remark added in November 2010. In the revised version of [BrK2] the authors
proved that the statement of Theorem 4.1 is valid for all almost periodic complex
submanifolds of X by establishing Cartan Theorem B for ‘generalized‘ coherent
sheaves on bX defined as in (4.3) with arbitrary open U ⊂ bX.

4.3. In this section we provide a sufficient condition for an almost periodic com-
plex hypersurface to be determined by a function in OAP (X) (see Theorem 4.17).
We formulate this condition for a wider class of objects, almost periodic divisors.
Almost periodic divisors were studied intensively (see, e.g., [Lv, FRR, Fav1, F2R]
and references therein), originally in the case n = 1, in connection with problems of
distribution of zeros of entire functions. Using the developed technique, we extend
some of the results in [FRR, Fav1, F2R].

Definition 4.12. An (effective) almost periodic (Cartier) divisor D on bX is given
by an open cover (Uα) of bX and a collection of (non-identically zero) holomorphic
functions fα ∈ O(Uα) such that fα/fβ ∈ O∗(Uα ∩ Uβ).

Here and below O∗(U) stands for the set of nowhere zero holomorphic functions
defined on an open subset U ⊂ bX.

The set of almost periodic divisors on bX is denoted by Div(bX).
Divisors D := (Uα, fα) and G := (Wγ , gγ) from Div(bX) are called equivalent

if there exists a refinement {Vβ} of both covers (Uα) and (Wγ) and holomorphic
functions cβ ∈ O∗(Vβ) such that

fα|Vβ = cβ · gγ |Vβ for Vβ ⊂ Uα ∩Wγ .
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If D = (Uα, fα), then the 1-cocycle {fα/fβ} determines a holomorphic line
bundle ED on bX. The family {fα} (uniquely) determines a holomorphic section
sD of ED. Therefore there exists a bijective correspondence between Div(bX) and
the set of holomorphic sections of holomorphic line bundles on bX. Then divisors
D, G are equivalent if and only if there exists an isomorphism η : ED → EG of
holomorphic line bundles such that η∗(sG) = sD.

Given a divisor D ∈ Div(bX) and ξ ∈ Υ the pullback D′ := ι∗ξD is a (standard)
divisor on X. Using the Hurwitz theorem one can show that for a fixed ξ ∈ Υ the
divisor D can be uniquely recovered from D′.

Definition 4.13. A divisor on X of the form ι∗ξD, ξ ∈ Υ, D ∈ Div(bX), is called
almost periodic.

By DivAP (X) we denote the collection of all almost periodic divisors on X. The
equivalence relation on DivAP (X) is defined as follows: divisors D′1 := ι∗ξD1 and

D′2 := ι∗ξD2 from DivAP (X) are equivalent iff D1 and D2 are equivalent in Div(bX).
An equivalent definition of almost periodic divisors on X can be given in terms

of currents. In the setting of Example 2.5(1), i.e., when X is a tube domain, this
definition coincides with the classical one (cf. [Lv, F2R]).

We assume without loss of generality that the open sets Uα in Definition 4.12
are chosen so that Uα = p−1

b (U0) ∼= U0,α×K, where U0 b X0 is a simply connected
coordinate chart and K ⊂ bG is open. As before, we identify Uα with U0,α ×K.

Definition 4.14. A divisor D ∈ Div(bX) is called smooth if for all (z, η) ∈ Uα =
U0,α ×K moduli of gradients with respect to z of functions fα in Definition 4.12
satisfy |∇zfα(z, η)| > 0.

A divisor in DivAP (X) is called smooth if it has the form ι∗ξD, where D is
smooth.

Definition 4.15. A divisor D ∈ Div(bX) is called cylindrical if the open sets Uα
in Definition 4.12 have the form Uα := p−1

b (U0,α), U0,α ⊂ X0.
A divisor in DivAP (X) is called cylindrical if it has the form ι∗ξD, where D is

cylindrical.

If in Definition 4.12 the open cover consists of a single set bX, then the divisor D
is called principal. It follows that a principal almost periodic divisor is determined
by a single (nonzero) function on bX (in particular, each principal almost periodic
divisor is cylindrical). Accordingly, an almost periodic divisor in DivAP (X) is called
principal if it is determined by a single function of the form ι∗ξf with f ∈ O(bX).

Any divisor D′ := ι∗ξD ∈ DivAP (X) is defined by the holomorphic section ι∗ξsD
of the complex vector bundle ι∗ξED on X. The set of zeros of ι∗ξsD is called the

support of the divisor D′ and is denoted by supp(D′) ⊂ X. (Similarly we introduce
the definition of support for elements of Div(bX).)

Note that the equivalence relation on DivAP (X) preserves supports: if D, D′ are
equivalent, then supp(D) = supp(D′). The same is valid for divisors in Div(bX).

The next statement relates the notions of an almost periodic complex hypersur-
face (cf. Definition 4.8) and of an almost periodic divisor.

Proposition 4.16. Let Z ⊂ bX be an almost periodic complex hypersuface. Let
Uα and hα ∈ O(Uα) be open sets and holomorphic functions determining Z in
Definition 4.8.
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(1) The collection (Uα, hα) determines a smooth almost periodic divisor DZ ∈
Div(bX), such that Z = supp(DZ).

(2) If D1, D2 ∈ Div(bX) are smooth almost periodic divisors such that

supp(D1) = supp(D2),

then D1, D2 are equivalent. In particular, DZ is determined by the hyper-
surface Z uniquely up to equivalence.

(3) The support Z := supp(D) of a smooth almost periodic divisor D ∈
Div(bX) is an almost periodic hypersurface in bX, and any representing
divisor DZ is equivalent to D.

(4) The hypersurface Z is cylindrical if and only if DZ is equivalent to a smooth
cylindrical almost periodic divisor.

Similar to (1)–(4) correspondences hold between almost periodic complex hyper-
surfaces and almost periodic divisors in X.

The proof of Proposition 4.16 uses the fact that if U ⊂ bX is open, h ∈ O(U)
is the defining function for Z ∩ U as in Definition 4.8, and a function f ∈ O(U)
vanishes on Z ∩ U , then f/h ∈ O(U) (see details in [BrK2]).

Theorem 4.17. Suppose that X ′0 ⊂ X0 is an open submanifold homotopically
equivalent to X0 and X ′ := p−1(X ′0). Let D ∈ DivAP (X). If the restriction D|X′
is a principal almost periodic divisor, then D is equivalent to a principal almost
periodic divisor.

In particular, if supp(D) ∩ X ′ = ∅, then D is equivalent to a principal almost
periodic divisor.

Particular cases of this result for X, X ′ tube domains (cf. Example 2.5(1)) were
proved in [FRR] (n = 1), and [Fav1] (n ≥ 1). The proof in [FRR] uses Arakelyan’s
theorem and gives an explicit construction of the almost periodic function f deter-
mining the principal divisor. The proof in [Fav1] uses a sheaf-theoretic argument;
our proof employs a similar argument.

Theorem 4.18. Let D ∈ Div(bX) be an almost periodic divisor. Then the follow-
ing is true:

(1) If any divisor equivalent to D is non-cylindrical, then the projection of
supp(D) onto X0 coincides with X0.

(2) If one of the sets Uα in Definition 4.12 for D has form Uα := p−1
b (U0,α),

then D is equivalent to a cylindrical divisor.

The converse to assertion (1) of Theorem 4.18 is not true (e.g., one can modify
the construction in Section 4.4 to produce an example of a cylindrical divisor D ∈
Div(bX) such that the projection of supp(D) onto X0 coincides with X0).

The following problem is considered in [FRR]: describe the class C of holomorphic
functions on T such that the set of elements of equivalence classes of all principal
divisors determined by functions from C coincides with DivAP (X). It was proved
in [FRR] that C = {f ∈ O(T ) : |f | ∈ CAP (T )}. We extend this result as follows.

Let Df ∈ Div(X) denote the divisor determined by a function f ∈ O(X).

Theorem 4.19. Suppose that X0 is a non-compact Riemann surface. For each
D ∈ DivAP (X) there exists a function f ∈ O(X) with |f | ∈ CAP (X) and a divisor
D′ ∈ Div(X) equivalent to D such that D′ = Df .
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Conversely, for a complex manifold X0 (of any dimension n ≥ 1) the divisor Df

defined by a function f ∈ O(X) with |f | ∈ CAP (X) belongs to DivAP (X).

In the case n > 1 the first assertion of the theorem is no longer true, at least in
tube domains (see [Fav2] where also an explicit necessary and sufficient condition
for validity of this assertion is obtained in the case of a tube domain). The proofs
in [FRR, Fav2] use some properties of almost periodic currents (distributions). Our
proof is mostly sheaf-theoretic, see [BrK2].

4.4. In this section we construct a smooth non-cylindrical almost periodic hyper-
surface Z in a regular covering p : X → X0 of a Riemann surface of finite type X0,
having the deck transformation group Z. We assume that X0 is a relatively com-
pact subdomain of a larger (non-compact) Riemann surface X̃0 whose fundamental

group satisfies π1(X̃0) ∼= π1(X0).
In general, since a regular covering X ′ → X0 with a maximally almost periodic

deck transformation group whose commutator subgroup has infinite index (e.g., the
universal covering of X0) can be factorized via a regular covering p : X → X0 with
the deck transformation group Z, the pullback of Z by the factorizing covering map
is a smooth non-cylindrical hypersurface in X ′.

Note that the covering of Example 2.5(1) with n = 1, i.e., a complex strip
covering an annulus, is the regular covering of the above form.

Let us briefly describe this construction. Instead of dealing with bundle bX we
work with bundle bT2X defined as follows. Choose two characters χ1, χ2 : Z →
S1 ∼= R/(2πZ) such that the homomorphism (χ1, χ2) : Z → T2 = S1 × S1 is an
embedding with dense image. Consider the fibre bundle bT2X over X0 with fibre
T2 associated with the homomorphism (χ1, χ2). The bundle bT2X is embedded
into a holomorphic fibre bundle b(C∗)2X with fibre (C∗)2, C∗ := C \ {0}, associated

with the composite of the embedding homomorphism T2 ↪→ (C∗)2 and (χ1, χ2).
Moreover, the covering X of X0 admits an injective C∞ map into bT2X with dense
image and the composite of this map with the embedding of bT2X into b(C∗)2X is
an injective holomorphic map X → b(C∗)2X. Further, the bundle b(C∗)2X admits a

holomorphic trivialization η : b(C∗)2X → X0×(C∗)2. We choose χ1(1) and χ2(1) so

close to 1 ∈ S1 that the image η(bT2X) ⊂ X0×(C∗)2 is sufficiently close to X0×T2.

Thus identifyingX (by means of holomorphic injectionX ↪→ b(C∗)2X
η→ X0×(C∗)2)

with a subset of X0 × (C∗)2, we obtain that X is sufficiently close to X0 × T2.
Next, we construct a smooth complex hypersurface in X0 × (C∗)2 such that in

each cylindrical coordinate chart U0 × (C∗)2 on X0 × (C∗)2 for U0 b X0 simply
connected it cannot be determined as the set of zeros of a holomorphic function
on U0 × (C∗)2. Intersecting this hypersurface with X we obtain a non-cylindrical
almost periodic hypersurface in X.

To construct such a hypersurface in X0 × (C∗)2, we determine a smooth divisor
in (C∗)2 that has a non-zero Chern class (i.e., it cannot be given by a holomorphic
function on (C∗)2), and whose support intersects the real torus T2 ⊂ (C∗)2 trans-
versely. Then we take the pullback of this divisor with respect to the projection
X0 × (C∗)2 → (C∗)2 to get the desired hypersurface.

In the following two sections we provide the details of the construction.

I. Characters χ1, χ2 : Z → S1 ⊂ C∗ in the definition of the fibre bundle bT2X
can be chosen in the form χi := eiλiϕ, λi ∈ R, i = 1, 2, with λ1, λ2 ∈ R \Q linearly
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independent over Q. This guarantees that the homomorphism χ := (χ1, χ2) : Z→
T2 = S1 × S1 is an embedding with dense image. Recall that pb,T2 : bT2X → X0

is the bundle with fibre T2 associated with χ. The homomorphism χ induces a
C∞ injection ιχ0 of the covering p : X → X0 into bT2X such that ιχ0 (X) is dense in
bT2X. Extending χ to a continuous surjective homomorphism bZ→ T2 we extend
by continuity ιχ0 to a surjective homomorphism of fibre bundles Q : bX → bT2X.
In particular, ιχ0 = Q ◦ ι0, cf. Section 4.2.

Next, we introduce notions of a holomorphic function and a divisor on bT2X.
A function f ∈ C(U) on an open subset U ⊂ bT2X is called holomorphic if its

pullback (ιχ0 )∗f is holomorphic on X ∩ (ιχ0 )−1(U) (cf. Definition 4.3 and the remark
after).

The definition of a divisor on bT2X (or on its open subset) is analogous to that
of an almost periodic divisor on bX. Similarly, we define equivalence relation and
smooth and cylindrical divisors on bT2X.

Let Div
(
bT2X

)
denote the collection of divisors on bT2X. We clearly have that

the pullback by Q of a divisor from Div
(
bT2X

)
belongs to Div(bX). In particular,

if H ∈ Div
(
bT2X

)
, then (ιχ0 )∗H ∈ DivAP (X). We also have the following

Proposition 4.20. Let H ∈ Div
(
bT2X

)
.

(1) If divisor H is smooth, then the almost periodic divisor (ιχ0 )∗H is smooth.

(2) If divisor H is cylindrical, then the almost periodic divisor (ιχ0 )∗H is cylin-
drical.

The next statement justifies the choice of the bundle bT2X (instead of bX) in
our construction.

Proposition 4.21. Suppose that divisor H ∈ Div
(
bT2X

)
is not equivalent to a

cylindrical divisor on bT2X. Then the almost periodic divisor (ιχ0 )∗H ∈ DivAP (X)
is not equivalent to a cylindrical almost periodic divisor on X.

It follows from Propositions 4.20(1) and 4.21 that it suffices to construct a smooth
divisor H ∈ Div

(
bT2X

)
not equivalent to a cylindrical divisor on bT2X. Then its

pullback D := (ιχ0 )∗H is a smooth non-cylindrical almost periodic divisor on X.
By Proposition 4.16(3) (cf. remark after), the support Z := supp(D) of divisor D is
an almost periodic complex hypersurface in X. Moreover, Z is non-cylindrical, for
otherwise, by Proposition 4.16(4) its representing divisor DZ ∈ DivAP (X) is equiv-
alent to a (smooth) cylindrical divisor. However, by Proposition 4.16(3) divisor D
is equivalent to divisor DZ giving a contradiction.

II. Now we construct divisor H on bT2X with the required properties.

(A) First, note that the bundle bT2X is embedded into a holomorphic fibre
bundle pb,(C∗)2 : b(C∗)2X → X0 with fibre (C∗)2 associated with the composite of

the embedding homomorphism T2 ↪→ (C∗)2 and χ. Moreover, the composite of this
embedding with ιχ0 is a holomorphic injective map X → b(C∗)2X.

Proposition 4.22. For any neighbourhood U b (C∗)2 of T2 there exist sufficiently
small λ1, λ2 in the definition of χ and a holomorphic trivialization η : b(C∗)2X →
X0 × (C∗)2 of the corresponding to χ bundle b(C∗)2X such that η(bT2X) ⊂ X0 ×U
(i.e., under a suitable definition, η(bT2X) is sufficiently close to X0 × T2).
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In what follows, we assume that max{λ1, λ2} > 0 and is sufficiently small.
(B) We define the equivalence relation on the set of divisors on (C∗)2 analogously

to that for divisors on bX (cf. Section 4.3).
Let G be a divisor on (C∗)2 whose support intersects the real torus T2 ⊂ (C∗)2

transversely (cf. Proposition 4.24 below). Let π : X0 × (C∗)2 → (C∗)2 be the nat-
ural projection. We define a smooth divisor E on the complex manifold b(C∗)2X

as pullback with respect to the holomorphic map π ◦ η of the divisor G on (C∗)2.
By Proposition 4.22, since supp(G) intersects T2 ⊂ (C∗)2 transversely, for all suffi-
ciently small λ1, λ2 > 0 the support of the divisor E has a non-empty intersection
with the subbundle bT2X of b(C∗)2X.

We define divisor H as the restriction of divisor E to bT2X. Specifically, if divisor
G on (C∗)2 is determined by an open cover (Uα) and functions {fα ∈ O(Uα)}, then
divisor H is determined by the open cover

(
bT2X∩(π◦η)−1(Uα)

)
and the functions(

(π ◦ η)∗fα
)
|bT2X∩(π◦η)−1(Uα).

Clearly, each set bT2X∩(π◦η)−1(Uα) is open in bT2X, and the ratios of functions
(π ◦ η)∗fα on intersections of their domains are nowhere zeros. However, to claim
that H is a well-defined divisor on bT2X we must prove that these functions are
holomorphic.

Proposition 4.23. (1) Functions (π ◦ η)∗fα are holomorphic on open subsets
bT2X ∩ (π ◦ η)−1(Uα) of bT2X. Thus, divisor H is well defined.

(2) If divisor G ∈ Div(C∗)2 is smooth, then divisor H ∈ Div
(
bT2X

)
is also

smooth.

(3) If divisor G is not equivalent to a principal divisor, then divisor H is not
equivalent to a cylindrical divisor.

Proposition 4.24. There exists a divisor G on (C∗)2 which is smooth, not equiv-
alent to a principal divisor, and whose support intersects the real torus T2 ⊂ (C∗)2

transversely in finitely many points.

It follows from Propositions 4.23 and 4.24 that there exists a smooth divisor
H on bT2X which is not equivalent to a cylindrical divisor. This concludes our
construction (cf. the discussion in the end of part I).

In the case X := T is a tube domain, cf. Example 2.5(1), the construction of
a non-cylindrical hypersurface is much simpler. In fact, one can show that there
exists λ > 0 such that any periodic hypersurface Y := p−1(Y0) ⊂ T , p = p2π, where
Y0 cannot be determined by a single function in O(T0), is a non-cylindrical almost
periodic hypersurface with respect to the projection pλ : T → T0λ, see (3.2).

5. Proofs

Unless specified otherwise, in the proofs below a holomorphic function f ∈ O(X)
is called almost periodic (written f ∈ OAP (X)) if it is almost periodic in the sense
of Definition 2.2. We prove the equivalence of Definitions 2.1 and 2.2 in Proposition
5.4.
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Proof of Proposition 3.9. Let us establish the first isomorphism. It is easy to
see that any function f ∈ OAP (X) is locally Lipschitz with respect to the semi-
metric d′ (see Section 3.2), i.e.,

(5.4) |f(x1, g)− f(x2, g)| ≤ Cd′
(
(x1, g), (x2, g)

)
:= Cd(x1, x2)

for all (x1, g), (x2, g) ∈W0 ×G ∼= p−1(W0), where W0 b X0 is a simply connected
coordinate chart. (Here C depends on d and W0 only.) We denote fx0

:= f |p−1(x0) ∈
AP (G), x0 ∈ X0, and define

f̃(x0) := fx0
, x0 ∈ X0.

Then f̃ is a section of bundle CX. From (5.4) for any linear functional ϕ ∈
(AP (G))∗ we have ϕ(f̃(x)(g)) := ϕ(f(x, g)) ∈ O(W0), g ∈ G, x ∈ W0 b X0,

a simply connected coordinate chart, cf. [Lin] for similar arguments. Thus f̃
is a holomorphic section of CX. Reversing these arguments we obtain that any
holomorphic section of CX determines an almost periodic holomorphic function on
X.

The proof of the second isomorphism is similar. �

Proof of Proposition 4.4. We conduct the proof for the first isomorphism only
(for the second one it is analogous). Fix an element ξ ∈ Υ and define an algebra
homomorphism i : O(bX)→ O(X) by the formula

i(f̂) := ι∗ξ f̂ , f̂ ∈ O(bX).

Since

i(f̂)|p−1(x0) = j∗ξ
(
f̂ |p−1

b (x0)

)
∈ AP (G), x0 ∈ X0,

i(f̂) ∈ OAP (X), i.e., i maps O(bX) into OAP (X). To define the inverse map
i−1, we extend a function f ∈ OAP (X) from ιξ(X) to bX, and then show that

the corresponding extension f̂ belongs to O(bX). Since ιξ(X) is dense in bX (see
Section 4.2), the required result will follow.

Given f ∈ OAP (X) denote fx0
:= f |p−1(x0) and then define f̂x0

to be the exten-

sion of fx0 from p−1(x0) ∼= G to p−1
b (x0) ∼= bG so that j∗ξ f̂x0 = fx0 . The family of

the extended functions over points of X0 determines a function f̂ on bX such that

f̂(x) = f̂x0
(x) for x0 := pb(x). Using a normal family argument one shows that

f̂ ∈ O(bX), see, e.g., [Lin] or [BrK1, Lemma 2.3] for similar results. Clearly, f is

such that ι∗ξ f̂ = f . Thus i is an isomorphism. �

Proof of Theorem 2.3. We prove the second assertion only (the proof of the
first one is analogous). By Theorem 3.8, under the hypothesis of the theorem any

function f ∈ OAP (X) extends to a function f̃ ∈ OAP (X̃); if f is bounded, then

f̃ is bounded as well. Thus, without loss of generality we may assume that X̃0

coincides with the ultraliouville manifold X0. We have to show that if f ∈ OAP (X)
is bounded, then f is constant.

Our proof relies on the maximum modulus principle for holomorphic functions
in O(bX). We use the isomorphism OAP (X) ∼= O(bX) established in Proposition
4.4.
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Proposition 5.1 (Maximum modulus principle). Let X0 be a connected com-
plex manifold. Suppose that the modulus |f | of a function f ∈ O(bX) attains its
maximum at a point y ∈ bX. Then f is constant.

Proof. Let ξ ∈ Υ be such that y ∈ ιξ(X). Then the modulus of function ι∗ξf ∈
OAP (X) attains its maximum at ι−1

ξ (y) ∈ X, an interior point of X. By the usual
maximum modulus principle for holomorphic functions ι∗ξf ≡ const, so f is as well

(because ιξ(X) is dense in bX). �

Next, define
h̃(y) := sup

g∈G
{|f(g · y)|}, y ∈ X.

Since {y 7→ f(g · y) , y ∈ X}g∈G is a family of uniformly bounded holomorphic

functions, h̃ is a continuous plurisubharmonic function invariant with respect to
the action of G on X, cf. [Lin] for a similar argument. Hence there exists a

bounded continuous plurisubharmonic function h on X0 such that h̃ = p∗h. In
particular, h̃ ≡M (≥ 0), because X0 is ultraliouville.

Note that M = supx∈bX |f̂(x)|, where f̂ ∈ O(bX) stands for the extension of f

to bX. For otherwise, there exists a point x0 ∈ bX such that |f̂(x0)| > M . Let
z0 := pb(x0) ∈ X0, then

M = h(z0) := sup
x∈p−1(z0)

|f(x)| = max
x∈p−1

b (z0)
|f̂(x)| ≥ |f̂(x0)| > M,

a contradiction. Thus, f̂ attains its maximum at a point in bX. By Proposition

5.1 f̂ (and hence f) is constant. �

Sketch of the proof of Theorem 4.1 for cylindrical hypersurfaces. We use
the following two statements, which are only formulated here, see [BrK2] for their
proofs.

Let Z ⊂ bX be a cylindrical complex almost periodic hypersurface (cf. Definition
4.9).

Proposition 5.2. Let f ∈ O(Z). Then for any point z ∈ Z there exists its
neighbourhood V ⊂ bX and a function FV ∈ O(V ) such that F |Z∩V = f |Z∩V .

The proof of Proposition 5.2 employs an analogue of the inverse function theorem
for holomorphic maps between open subsets of bX. Using this theorem, we also
prove

Proposition 5.3. Let U := p−1
b (U0), U0 ⊂ X0 be open, h ∈ O(U) be the defining

function for Z ∩ U (cf. Definition 4.9). Suppose that a function q ∈ O(U) vanishes
on Z ∩ U , then q = ph for some p ∈ O(U).

Let FZ be the sheaf of germs of holomorphic functions on bX vanishing on Z.
By Proposition 5.3 the sequence

0→ bXO|U → FZ |U → 0,

where the second map is given by multiplication by h ∈ O(U), is exact, i.e., sheaf
FZ is coherent. By Proposition 5.2, for a function f ∈ O(Z) there exist an open
cover (Vα) of bX and functions FVα ∈ O(Vα) such that F |Z∩Vα = f |Z∩Vα . We
define a 1-cocycle with values in FZ by the formulas Gαβ := FVα −FVβ on Vα ∩Vβ .
Applying to the cohomology class defined by this cocycle Theorem 4.6 and passing
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to a refinement of (Vα), if necessary, we may assume without loss of generality that
H1
(
(Vα),FZ

)
= 0. Thus, there exist functions Hα ∈ O(Vα) vanishing on Z ∩ Vα

such that Gαβ = Hα−Hβ on Vα∩Vβ . It follows that the family {FVα−Hα ∈ O(Vα)}
determines a function F ∈ O(bX) such that F |Z = f . �

Proposition 5.4. Definitions 2.1 and 2.2 are equivalent.

Proof. Clearly, a function f ∈ O(X) almost periodic in the sense of Definition 2.1 is
almost periodic in the sense of Definition 2.2. Conversely, suppose that f ∈ O(X) is
almost periodic in the sense of Definition 2.2. A neighbourhood U ⊂ X in Definition
2.1 has the form p−1(U0) ∼= U0×G, where U0 b X0 is a simply connected coordinate
chart on X0. We naturally identify U with U0 × G. Then we must show that the
family of translates {(z, h) 7→ f(z, gh), z ∈ U0, h ∈ G}g∈G is relatively compact.

By Proposition 4.4, function f admits an extension f̂ ∈ O(bX). We prove the

relative compactness of the family {(z, ξ) 7→ f̂(z, ηξ), z ∈ U0, ξ ∈ bG}η∈bG. Since
G ↪→ bG, this implies the required.

Indeed, the family {(z, ξ) 7→ f̂(z, ηξ), z ∈ U0, ξ ∈ bG}η∈bG is uniformly bounded.

Its equicontinuity follows from uniform continuity of f̂ , since Ū0 × bG is compact.
Arzelà-Ascoli theorem now implies the required. �

Proof of Proposition 4.21. Our proof consists of three parts.

1. By definition, divisor H is not equivalent to a cylindrical divisor if there exists
a cylindrical neighbourhood U := p−1

b,T2(U0) ⊂ bT2X, where U0 ⊂ X0 is open simply

connected, such that the restriction H|U of H to U is not equivalent to any principal
divisor on U (i.e., a divisor defined by a single function in O(U)).

We can reformulate the latter statement in terms of the Chern classes of divisors
on U . By definition the Chern class cU,T2(D) ∈ H2(U,Z) of a divisor D on U is
the Chern class of the line bundle associated with D (i.e., constructed by transition
functions which are the ratios of holomorphic functions on an open cover of U
determining D). If D is principal, then the associated line bundle is topologically
trivial; hence, cU,T2(D) = 0.

Therefore, if H|U is equivalent to a principal divisor, then cU,T2(H|U ) = 0.

2. We have a surjective map Q : bX → bT2X, cf. Section 4.4(1), such that if
D ∈ Div

(
bT2X

)
, then Q∗D ∈ Div(bX). By definition, divisor (ιχ0 )∗H ∈ DivAP (X)

is cylindrical if and only if Q∗H ∈ Div(bX) is cylindrical (cf. Definition 4.9).
As in part 1, we define Chern classes cQ−1(U)(D) ∈ H2(Q−1(U),Z) of divisors

D ∈ Div(bX) (note that Q−1(U) = p−1
b (U0)). Therefore, if divisor Q∗D|Q−1(U) is

equivalent to a principal divisor, then cQ−1(U)(Q
∗D|Q−1(U)) = 0. By the functori-

ality of Chern classes we have

cQ−1(U)(Q
∗D|Q−1(U)) = Q∗

(
cU,T2(H|U )

)
,

where Q∗ : H2(U,Z)→ H2(Q−1(U),Z) is the map induced by Q|U .

3. Thus, we must prove that if cU,T2(H|U ) 6= 0, then Q∗
(
cU,T2(H|U )

)
6= 0.

Without loss of generality we may assume that U0 is contractible. Hence, U ∼=
U0 × T2 is homotopic to T2 and Q−1(U) ∼= U0 × bZ is homotopic to bZ.

Further, for a fixed point x ∈ U0, the embeddings T2 ∼= p−1
b,T2(x) ↪→ U and

bZ ∼= p−1
b (x) ↪→ Q−1(U) induce isomorphisms of the corresponding cohomology

groups. Identifying under these isomorphisms cU,T2(H|U ) with a non-zero element
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η ∈ H2(T2,Z) and Q∗
(
cU,T2(H|U )

)
with q∗(η) ∈ H2(bZ,Z), where q := Q|Q−1(x) :

bZ → T2 is the restriction (surjective) homomorphism, we see that it suffices to
show that q∗ is injective.

To do this, we present bZ as inverse limit of an inverse family of compact Abelian
Lie groups Zα, α ∈ Λ (a partially ordered set with the infimal element 0), equipped
with surjective homomorphisms qβα : Zβ → Zα for α ≤ β and such that Z0 := T2

and the limit homomorphism q0 : bZ → Z0 coincides with q. Then if q∗(ω) = 0
for some non-zero ω ∈ H2(T2,Z) ∼= Z, there exists an index β > 0 such that

(qβ0 )∗(ω) = 0 ∈ H2(Zβ ,Z). By definition,

(5.5) Zβ = Tm ×
k⊕
l=1

Z/nl for certain m (≥ 2), k, nl ∈ Z+,

where Tm := (S1)m is the real m-torus.

Since qβ0 is surjective, its restriction q̂ to Tm is surjective as well, and the re-

striction of (qβ0 )∗(ω) to Tm is 0 in H2(Tm,Z). Thus it suffices to prove that the
surjective homomorphism q̂ : Tm → T2 induces the injective map of 2-cohomology
groups.

Indeed, the kernel of q̂ is isomorphic to Tm−2 ⊕ Γ, where Γ is a finite Abelian
group, and the regular covering r : M → T2 of T2 with the transformation group
Γ is also isomorphic to T2. Moreover, there exists a surjective homomorphism
s : Tm → M with connected fibres isomorphic to Tm−2 such that q̂ = r ◦ s. One
easily shows that the exact sequence of groups

0→ Tm−2 ∼= Ker(s)→ Tm s→M → 0

splits, i.e., there exists a monomorphism ŝ : M → Tm such that Tm = Ker(s) ⊕
ŝ(M). Thus if q̂∗(ω) = 0 for some non-zero ω ∈ H2(T2,Z), then the restriction
of q∗(ω) to ŝ(M) ∼= M is 0 in H2(ŝ(M),Z). This implies that it suffices to prove
that r : M → T2 induces injection of 2-cohomology groups. But the map r∗ : Z ∼=
H2(T2,Z) → H2(M,Z2) ∼= Z is multiplication by #Γ (= the degree of r); that is,
r∗ is injective, as required. �

Proof of Proposition 4.22. Recall that X0 is relatively compact in a Riemann
surface X̃0 such that π1(X0) ∼= π1(X̃0). Consider the composite ϕ of the identity
homomorphism Z→ Z and the embedding Z ↪→ C, where Z is the quotient group of
π1(X̃0) corresponding to the deck transformation group of the covering p : X → X0.

The holomorphic bundle over X̃0 associated with homomorphism ϕ has fibre C and
is given on an acyclic open cover (Ui)i∈I of X̃0 by an integer-valued additive cocycle

{cij}i,j∈I . Since H1(X̃,O) = 0 and the cover is acyclic, by the Leray theorem this
cocycle can be resolved, i.e., there are ci ∈ O(Ui) such that ci− ci = cij on Ui ∩Uj .
Further, let us consider a refinement (Vj)j∈J of (Ui)i∈I such that each Vj is a
relatively compact coordinate chart in some Ui(j). Taking a finite cover (Wk) of
X0 by elements Vj and restricting the above cocycle and its resolution to this cover
(retaining the same symbols for the restrictions) we get

(5.6) ck − c` = ck` on Wk ∩W`

and, moreover, each ck ∈ O(Wk) is bounded. According to the result of [GN]

there exists a function f ∈ O(X̃0) without critical points. Adding to functions ck
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the function cf with a sufficiently large c ∈ C, we may and will assume that each
holomorphic 1-form dck is nowhere zero on Wk.

By definition the bundle b(C∗)2X is defined on the cover (Wk) of X0 by the
1-cocycle

ϕk`(z) :=

(
eiλ1ck` 0
0 eiλ2ck`

)
, z ∈Wk ∩W` .

According to (5.6) we have

ϕk` = ϕk · ϕ−1
` on Wk ∩W` ,

where

ϕk(z) :=

(
eiλ1ck(z) 0
0 eiλ2ck(z)

)
, z ∈Wk .

Thus b(C∗)2X is isomorphic to the trivial bundle X0 × (C∗)2 and this isomorphism
is given by the formulas

(5.7) η(z, z1, z2) =
(
z, z1e

−iλ1ck(z), z2e
−iλ2ck(z)

)
, z ∈Wk, (z1, z2) ∈ (C∗)2.

This formula shows that if λ1, λ2 are sufficiently small, then η(bT2X) belongs to
X0 × U for a given neighbourhood U b (C∗)2 of T2. �

Proof of Proposition 4.23. (1) By results of part II (A) of Section 4.4, the com-
plex manifold X admits a holomorphic injective map into b(C∗)2(X). Without loss
of generality we identify X with its image in b(C∗)2(X). The functions (π ◦ η)∗fα
are holomorphic on subsets (π ◦ η)−1(Uα) ⊂ b(C∗)2(X), hence their restrictions

to X are holomorphic on open subsets X ∩ (π ◦ η)−1(Uα) ⊂ X. This means
that the restrictions of functions (π ◦ η)∗fα to bT2X are holomorphic on subsets
bT2X ∩ (π ◦ η)−1(Uα) ⊂ bT2X.

(2) Fix a neighbourhood U b (C∗)2 such that the projection q : (C∗)2 → C2/Λ
maps U biholomorphically onto its image. Then there exist a finite open cover (Bα)
of Ū by open balls and holomorphic functions fα ∈ O(2Bα), where 2Bα is the ball
with the same center as Bα and of twice the radius of Bα, with norms of gradients
bounded away from zero on 2Bα such that divisor G on 2Bα is defined as the set
of zeros of fα. By definition, E on (π ◦ η)−1(U) is determined by the family of
pullbacks fα ◦η. In local coordinates (z, z1, z2) on Wk×Bα (considered as a subset
of b(C∗)2X) with Wk as in (5.7) the divisor E is given (for sufficiently small λj) by
the equation

(5.8) gα(z, z1, z2) := fα
(
z1e
−iλ1ck(z), z2e

−iλ2ck(z)
)

= 0.

Next, for such λj the preimage η−1(X0 × U) ⊂ b(C∗)2X contains the bundle bT2X
(see (5.7)). Therefore the intersection of supp(E) with bT2X is defined by the
above equations with (z1, z2) ∈ T2. Also for such λj , since supp(G) intersects
T2 transversely in finitely many points, for a fixed z ∈ X0 the manifold supp(E)
intersects the fibre (torus) over z in bT2X transversely in finitely many points as
well. Moreover, all points (z1, z2) ∈ T2 satisfying (5.8) are sufficiently close to the
points of the intersection of supp(G) with Uα and tend to these points uniformly
in z as λ1, λ2 tend to 0 (this follows from the implicit function theorem).

By Oα ⊂ C2 we denote an open ball with center at 0 in the space of parameters
λ1, λ2 such that for λ = (λ1, λ2) ∈ Oα the expression on the left hand-side of (5.8)
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is well defined (i.e.,
(
z1e
−iλ1ck(z), z2e

−iλ2ck(z)
)
∈ 2Bα for such λ and all z ∈ Wk,

(z1, z2) ∈ Bα). Then we have for λ ∈ Oα, (z, z1, z2) ∈Wk ×Bα,

(5.9)

∂gα
∂z

(z, z1, z2)

=
∂fα
∂ξ1

(
z1e
−iλ1ck(z), z2e

−iλ2ck(z)
)
· z1e

−iλ1ck(z) · (−iλ1) · dck
dz

(z)

+
∂fα
∂ξ2

(
z1e
−iλ1ck(z), z2e

−iλ2ck(z)
)
· z2e

−iλ2ck(z) · (−iλ2) · dck
dz

(z)

= −dck
dz

(z)

(
λ1
∂fα
∂ξ1

(
z1e
−iλ1ck(z), z2e

−iλ2ck(z)
)

+λ2
∂fα
∂ξ2

(
z1e
−iλ1ck(z), z2e

−iλ2ck(z)
))
.

Suppose that a point θ = (θ1, θ2) ∈ T2 of the intersection of supp(G) with T2

belongs to Bα. The equation

λ1
∂fα
∂ξ1

(θ1, θ2) + λ2
∂fα
∂ξ2

(θ1, θ2) = 0

determines a one-dimensional complex subspace ` in the space C2 of parameters
λ = (λ1, λ2). Fix a compact subset Kθ ⊂ ∂Oα\` on the boundary ∂Oα of Oα. Since
the numbers of indices α and k in the covers are finite, without loss of generality
(decreasing each Oα, if necessary) we may assume that all Oα coincide (denote
this set by O). Also, since the number of points of intersection of supp(G) with
T2 is finite, the above argument shows, that we may choose the sets Kθ so that
K := ∩Kθ 6= ∅ and, moreover, K contains points from ∂O ∩ (R+)2. We set
K+ := K ∩ (R+)2. Then by the continuity of derivatives of fα there exist a number
0 < t ≤ 1 and neighbourhoods Nβ in U of points of intersection of supp(G) with
T2 such that each Nβ is a subset of some Bα and for z ∈Wk and (z1, z2) ∈ Nβ and
for any (λ1, λ2) ∈ t0K+ with 0 < t0 ≤ t,∣∣∣∣∂gα∂z (z, z1, z2)

∣∣∣∣ ≥ ct0 > 0,

where c is a constant independent of the choice of (z, z1, z2) and indices k, α. Here

we have used that
∣∣dck
dz

∣∣ is bounded away from zero by a numerical constant by our
choice of ck, see (5.6). As we have noticed before for sufficiently small t0 the sets
of solutions of equations (5.8) belong to unions of open sets Wk ×Nβ .

Thus we have proved that supp(H) := supp(E)∩bT2X can be covered by finitely
many sets in b(C∗)2(X) of the form Wk × Nβ (in suitable local coordinates on
b(C∗)2(X)) and there exist functions gkβ ∈ O(Wk×Nβ) such that supp(H)∩ (Wk×
Nβ) is the set of zeros of gkβ and the modulus of the derivative of gkβ with respect
to z ∈Wk is bounded away from zero on Wk×Nβ . This shows that H ∈ Div (bT2X)
is smooth.

(3) We use the results of part 1 of the proof of Proposition 4.21. It suffices to
show that there exists a contractible coordinate chart U0 b X0 such that the Chern
class cU,T2(H|U ) 6= 0 with U := p−1

b,T2(U0).
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Since divisor G on (C∗)2 is not equivalent to a principal divisor, its Chern class
c(G) 6= 0 in H2((C∗)2,Z) (see, e.g., [GH]). For any contractible coordinate chart
U0 b X0 the divisor GU0 on U0×(C∗)2 is defined as the pullback of G with respect to
the projection π : U0× (C∗)2 → (C∗)2. In particular, its Chern class c(GU0) equals
π∗
(
c(G)

)
and is non-zero because π induces isomorphisms of cohomology groups.

Since for such U0 the open set U ′ := p−1
b,(C∗)2(U0) ⊂ b(C∗)2X is biholomorphic by

means of η to U0×(C∗)2, from our construction we obtain that the restriction E|U ′ of
divisor E (:= (π◦η)∗G) to U ′ is the same as η∗GU0 . Thus the Chern class c(E|U ′) 6=
0 in H2(U ′,Z). Finally, U := p−1

b,T2(U0) ⊂ bT2X is a deformation retract of U ′

and therefore because H|U coincides with (E|U ′)|U the Chern class cU,T2(H|U ) 6=
0 (in fact, it coincides with c(E|U ′) under the identification of H2(U ′,Z) with
H2(U,Z)). �

Proof of Proposition 4.24. We construct a smooth divisor G on (C∗)2 that has
a non-zero Chern class and whose support intersects the real torus T2 transversely.

Let Λ := (2πZ + 2πiZ)2, Γ := (2πiZ)2 ⊂ C2. Then C2/Λ (with respect to the
action of Λ on C2 by translations) is a complex two-dimensional torus and C2/Γ
is the product of two infinite cylinders. Let c : C2 → C2/Γ be the (holomorphic)
quotient map. Then there exists a biholomorphic map q1 : (C∗)2 → C2/Γ defined
by the formula

q1(ζ1, ζ2) := c
(
(log ζ1, log ζ2)

)
, (ζ1, ζ2) ∈ (C∗)2;

here log : C∗ → C is the multi-valued logarithmic function.
Further, denoting by q2 : C2/Γ → (C2/Γ)/(2πZ)2 = C2/Λ the corresponding

holomorphic quotient map, we obtain that the regular covering q : (C∗)2 → C2/Λ
with the deck transformation group Z2 can be obtained as the composite q2 ◦ q1.

We start by constructing a smooth divisor V on C2/Λ having a non-zero Chern
class. Let z1 = x1 + iy1, z2 = x2 + iy2 be standard complex coordinates on C2.
They produce local coordinates on C2/Λ denoted analogously. It follows that

ω0 = dz1 ∧ dz̄2 + dz̄1 ∧ dz2 = 2(dx1 ∧ dx2 + dy1 ∧ dy2)

is a d-closed (1, 1)-form on C2/Λ having a non-zero de Rham cohomology class
[ω0] ∈ H2

DR(C2/Λ). We also consider a positive d-closed (1, 1)-form

η := ki(dz1 ∧ dz̄1 + dz2 ∧ dz̄2) = 2k(dx1 ∧ dy1 + dx2 ∧ dy2), k ∈ N.

Since ω0 and η have integer coefficients, they represent integral cohomology classes,
i.e., [ω0] and [η] belong to the image of H2(C2/Λ,Z) in H2

DR(C2/Λ) under the de
Rham isomorphism (see, e.g., [GH, Ch. 2.6]). By taking k sufficiently large one
obtains that ω := ω0 + η is a positive d-closed (1, 1)-form representing an integral
cohomology class. By the Lefschetz (1, 1)-theorem (observe that C2/Λ is projective)
the cohomology class [ω] is the Chern class of a positive line bundle Lω on C2/Λ.
Increasing k, if necessary, we can embed (using the Kodaira theorem) C2/Λ into a
projective space CPN by means of holomorphic sections of the bundle Lω so that
Lω is the pullback of the hyperplane bundle on CPN . By the Bertini theorem the
preimage in C2/Λ of a generic hyperplane H ⊂ CPN determines a smooth divisor
V in C2/Λ with Chern class [ω]. We claim that

Lemma 5.5. Under a suitable choice of H the support of the constructed divisor
V intersects the image q(T2) ⊂ C2/Λ transversely in finitely many points.
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Proof. Clearly, q embeds T2 into C2/Λ so that q(T2) is a (real) analytic submani-
fold of C2/Λ. It is also totally real meaning that Tx∩ iTx = 0 and Tx+ iTx = TC

x at
each x ∈ q(T2), where Tx is the tangent space to q(T2) at x and TC

x is the minimal
complex subspace of the tangent space to C2/Λ at x containing Tx (in our case
it coincides with this tangent space). This follows from the fact that T2 ⊂ (C∗)2

is totally real and q is biholomorphic in a neighbourhood of T2. Without loss of
generality we will identify C2/Λ with its image in CPN .

Let us choose a generic hyperplane H ⊂ CPN transversely intersecting C2/Λ and
intersecting q(T2) transversely at least at one point. To do that we pick x ∈ q(T2)
and decompose the complex tangent space Tx(CPN ) of CPN at x as TC

x ⊕L, where
L is a complex subspace of codimension 2 of Tx(CPN ). Further, in TC

x choose a
one-dimensional complex subspace L′ which intersects the real part Tx of TC

x by
0. Then L + L′ is a complex hyperplane in Tx(CPN ) transversely intersecting Tx.
Let H ′ ⊂ CPN be the hyperplane whose tangent space at x coincides with L+ L′.
Then H ′ intersects q(T2) transversely at x. Further, by the Bertini theorem we can
perturb H ′ to get a hyperplane H that also transversely intersects q(T2) at least
at one point and transversely intersects C2/Λ.

Next, consider a projection π in CPN along H onto a one-dimensional projective
subspace ` ⊂ CPN transversely intersecting H at a single point. In fact, π is a
meromorphic map of CPN onto ` ∼= CP1 and so it is defined outside a projective
subspace of CPN of (complex) codimension two. Perturbing H, if necessary, we
may assume that the latter subspace does not intersect q(T2) so that π is well
defined on q(T2). By our construction of H the image π(q(T2)) contains interior
points (because in a neighbourhood of a point of transversal intersection of H and
q(T2), the map π|q(T2) is diffeomorphic). Therefore by Sard’s theorem for almost

each interior point z ∈ π(q(T2)) (with respect to the measure on CP1 determined by
the Fubini-Study volume form) the preimage π−1(z)|q(T2) consists of finitely many

non-critical points of π|q(T2). But this means that the complex hyperplane π−1(z)

in CPN intersects q(T2) transversely. Finally, we can perturb π−1(z) (using the
Bertini theorem) so that the perturbed hyperplane intersects q(T2) transversely in
finitely many points and also intersects transversely C2/Λ (determining the required
divisor V ). �

Now, we define a smooth divisor G on (C∗)2 as the pullback by map q of the
divisor V . Let us show that the Chern class [q∗ω] = [q∗ω] ∈ H2

DR(C2/Λ) of G is
non-zero. First, [q∗η] = 0 by the definition of η (because each term of q∗η is a d-
closed 2-form on C∗ which homotopic to S1). Thus we must check that [q∗ω0] 6= 0.
Since q1 is a biholomorphism, it suffices to check that [q∗2ω0] ∈ H2

DR(C2/Γ) is non-
zero. Using coordinates z1 = x1 + iy1, z2 = x2 + iy2 on C2/Γ induced from the
standard coordinates on C2 we easily obtain

[q∗2ω0] = 2[dx1 ∧ dx2 + dy1 ∧ dy2] = 2[dy1 ∧ dy2].

The latter cohomology class is non-zero; to see this one integrates dy1 ∧ dy2, e.g.,
over an embedded real torus {(x1 + iy1, x2 + iy2) ∈ C2/Γ : x1, x2 = const} getting
a non-zero value which, as follows from the Stokes theorem, contradicts to the
assumption that dy1 ∧ dy2 is exact.

Lemma 5.5 implies that the support of G intersects T2 ⊂ (C∗)2 transversely in
finitely many points. �
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