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SDES WITH CRITICAL GENERAL DISTRIBUTIONAL DRIFTS: SHARP
SOLVABILITY AND BLOW UPS

D.KINZEBULATOV AND R. VAFADAR

To the memory of Yu.A. Semënov

Abstract. We establish weak well-posedness for SDEs having discontinuous diffusion coef-
ficients and general distributional drifts that may introduce blow up effects. Our drifts satisfy
minimal assumptions, i.e. we assume only that the Cauchy problem for the Kolmogorov back-
ward equation is well-posed in the standard Hilbert triple W 1,2 ↪→ L2 ↪→ W−1,2. By a result
of Mazya and Verbitsky, these assumptions are precisely those drifts that can be represented
as the sum of a form-bounded component (encompassing, for example, Morrey or Chang-
Wilson-Wolff drifts) and a divergence-free distributional component in the BMO−1 space of
Koch and Tataru.

We apply our results to finite particle systems with strong attracting interactions im-
mersed in a turbulent flow. This includes particle systems of Keller-Segel type. Crucially,
in dimensions d ≥ 3, we cover almost the entire admissible range of attraction strengths,
reaching nearly to the blow-up threshold.

As a further application of our results for SDEs and of the theory of Bessel processes, we
obtain an improved upper bound on the constant in the many-particle Hardy inequality. Con-
sequently, the lower bound previously derived by Hoffmann-Ostenhof, Hoffmann-Ostenhof,
Laptev, and Tidblom is shown to be close to optimal.
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1. Introduction

The subject of this paper is the stochastic differential equation (SDE)

Xt = x−
ˆ t

0

c(Xs)ds+
√
2

ˆ t

0

σ(Xs)dBs, x ∈ Rd, (1.1)

Key words and phrases. Stochastic differential equations, singular and distributional drifts, divergence-free
drifts, form-boundedness, BMO−1, De Giorgi’s method, particle systems, Keller-Segel model, blow ups.
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2 D.KINZEBULATOV AND R.VAFADAR

with critical distributional drift c and discontinuous diffusion coefficients σ (see Sections 5 and
6 for our precise setting). Here {Bt}t≥0 denotes a d-dimensional Brownian motion. SDEs with
singular drifts arise in various physical models, for instance, the passive-tracer model, where a
time-dependent drift c is the velocity field obtained from the Navier–Stokes equations [MK], or
finite-particle approximations of the Keller–Segel model of chemotaxis [CP, FJ]. In the latter case
one observes blow ups, i.e. when even the weak existence for SDE (1.1) fails once one replaces c by
(1+ε)c, ε > 0, in which case all particles collide a.s. in finite time and can stay “stuck” indefinitely
(sticky collision). Both of these models are within the scope of the present work.

We postpone a survey of the recent literature on SDEs with singular drifts (much of it produced
in the past decade) until after we have stated and discussed our assumptions on c.

Our main focus in this paper is on general drifts, i.e. not satisfying any special structural
conditions such as control of the sign on div c. So, on the one hand, our condition (A1)-(A4) (or,
equivalently, (1.6)) on c includes the drifts in the scaling-invariant Morrey class

sup
r>0,x∈Rd

r

(
1

|Br|

ˆ
Br(x)

|c|2+εdx
) 1

2+ε

<∞, (M2+ε)

or, more generally, the drifts in the Chang-Wilson-Wolff class: for some α > 0,

sup
r>0,x∈Rd

1

|Br|

ˆ
Br(x)

|c|2 r2
(
1 + (log+ |c|2 r2)1+α

)
<∞. (1.2)

This, for example, provides us with fliexible means to construct interaction kernels in particle
systems. Crucially, we reach the blow-up threshold for c, i.e.multiplying c by 1 + ε takes us out
of the weak existence regime. On the other hand, the same condition (A1)-(A4) ⇔ (1.6) includes
drifts arising in some of the physical models mentioned above, notably of the form

c = ∇C, C = −C⊤ is an anti-symmetric matrix field with entries in BMO(Rd). (BMO−1)

The class BMO−1 thus consists of divergence-free vector fields. It was identified by Koch-Tataru
[KT] as a large class of initial conditions for which one can prove the existence and uniqueness
of mild solution to 3D Navier-Stokes equations, and which provides natural scale and translation
invariant version of L2 boundedness of this solution. This class contains divergence-free drifts with
entries in Besov space of distributions B−1+d/p

p,∞ , p > d, or Morrey class M1 of Borel measurable
drifts, i.e. ⟨|c|1Br(x)⟩ ≤ Crd−1 with constant C independent of r or x ∈ Rd. Thus, although we
refer in this paper to c ∈ BMO−1 as distributional drifts, the class BMO−1 also contains quite
singular Borel measurable vector fields such as

c(x) =

(
x2

x21 + x22
,
−x1

x21 + x22
, 0, . . . , 0

)
, x ∈ Rd, (1.3)

which do not belong [L2
loc]

d.
The diffusion coefficients σ in Theorem 6.1 can have have critical discontinuities. This allows us

to handle some systems of particles that interact via diffusion coefficients. To keep the introduction
concise, we defer the discussion of non-constant diffusion coefficients to 6.

We test our results for general SDE (1.1) against some interacting particle systems:

Example 1.1 (Brownian particles in a turbulent flow). We aim at describing the dynamics of N
interacting particles in Rd, d ≥ 3, that experience strong mutual attraction while being advected
by a turbulent flow whose divergence-free distributional velocity field belongs to BMO−1(Rd).
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To this end, we work in RNd where N is large, and consider SDE

Xt = x0 −
ˆ t

0

c(Xs)ds+
√
2Bt, x0 = (x10, . . . , x

N
0 ) ∈ RNd, (1.4)

where Xt = (X1
t , . . . , X

N
t ), Xi

t is the position of the i-th particle at time t, Bt = (B1
t , . . . , B

N
t ),

{Bit}t≥0, (i = 1, . . . , N) are independent Brownian motions in Rd. We further take

c = b+ q

where:
– The first drift b : RNd → RNd is given component-wise by

bi(x1, . . . , xN ) :=
1

N

N∑
j=1,j ̸=i

√
κ
d− 2

2
ei,j(x)

xi − xj

|xi − xj |2
, xi, xj ∈ Rd, (1.5)

where eij ∈ L∞(RNd), ∥eij∥∞ ≤ 1. Setting eij = 1 introduces attraction between the
particles arising, for example, in the Keller-Segel model of chemotaxis1. The parameter
κ > 0 measures the strength of attraction.

– The second drift q is described by external divergence-free velocity field,

q(x1, . . . , xN ) =
(
q0(x

1), . . . , q0(x
N )
)
, q0 ∈ BMO−1(Rd),

so, it is easily seen, q ∈ BMO−1(RNd).
Either of our main results, Theorem 5.1 or Theorem 8.1 for eij = 1, applies to c = b + q and
provide, in particular, weak existence and approximation uniqueness for particle system (1.4).
Both theorems impose dimension-independent conditions, and so the resulting constraint on κ
does not degenerate as the number of particles N goes to infinity. See Examples 5.1, 8.1 where we
detail the particle system (1.4). In fact, in Example 8.1 we show that when all eij = 1 Theorem
8.1 allows us to handle all κ < 16 for all N , which is close to the blow up threshold for (1.4), i.e. if
κ is greater than a constant that is slightly larger than 16, then all particles collide in finite time
and stay glued to each other.

Section 4 compares our results (in the case q0 = 0 and eij = 1) with those of Cattiaux-Pédèches
[CP], Fournier-Jourdain [FJ], Fournier-Tardy [FT] and Tardy [T] whose methods exploit the
special structure of the drift (1.5) to obtain sharp, detailed results.

The search for the maximal admissible value of the strength of attraction κ before a blow up
regime can be re-stated as the search for the minimal level of thermal excitation that prevents
sticky collisions between the particles. The fact that the noise can turn local in time solutions
into global ones can be viewed as another instance of regularization by noise (regarding the latter,
see [Fl, FGP, FR]).

1.1. Result #1. In Theorem 5.1 and also in Theorem 6.1, we establish weak well-posedness of
SDE (1.1) for the following class of drifts:

c = b+ q, (A1)

where q is in general distribution-valued,

q ∈ BMO−1 (⇒ div q = 0), (A2)

1However, in this example we assume d ≥ 3, but will be able to include the case d = 2 as well, albeit, at the
moment, only partially, see Section 7.
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and b is a Borel-measurable drift satisfying

b ∈ Fδ, i.e. |b| ∈ L2
loc and ∥bφ∥22 ≤ δ∥∇φ∥22 + cδ∥φ∥22, ∀φ ∈W 1,2, (A3)

for some finite constants δ (important) and cδ (only its finiteness is important). That is, b is form-
bounded. The last condition covers several important cases. It includes the Morrey class M2+ε

(with form-bound δ depending on the Morrey norm ∥b∥M2+ε), the larger Chang-Wilson-Wolff class
introduced in (1.2) and, when we work in RNd, the many-particle drift (1.5) in Example 1.1 where
one has δ = (N − 1)2N−2κ. A fuller discussion and more examples appear in Section 3.

The constant δ measures the size or the “strength” of singularities. In Theorem 5.1 we impose
a completely dimension-free condition on δ:

δ < 4. (A4)

A key consequence is that the corresponding restriction on the attraction parameter κ = N2(N −
1)−2δ in Example 1.1 does not degenerate as the number of particles N tends to infinity. (Theorem
8.1 relaxes this constraint on κ by taking into account the divergence of b.)

Our proofs make use of specific properties of the classes Fδ and BMO−1, such as the compen-
sated compactness estimates and results on BMO-multipliers.

As was mentioned, class BMO−1 also contains some quite singular Borel-measurable vector
fields such as (1.3) that are not in [L2

loc]
d and therefore are not form-bounded.

1.1.1. Optimality of our conditions. We claim that condition (A1)-(A4) is close to optimal, i.e. it
cannot be substantially improved. This is justified by the following two observations.

– Mazya and Verbitsky [MV] proved that conditions (A1)–(A3) are equivalent to the esti-
mate

|⟨c · ∇φ, η⟩| ≤ α∥∇φ∥2∥∇η∥2 (1.6)
for all φ, η ∈ C∞

c (Rd), for some constant α > 0 (up to replacing the homogeneous Sobolev
spaces with their non-homogeneous counterparts, see Section 6). If α < 1, then inequality
(1.6) ensures that the KLMN theorem [Ka, Ch. 6,§2] applies and so the Cauchy problem
for the Kolmogorov backward equation is weakly well-posed in the standard Hilbert tripe
of Sobolev spaces W 1,2 ↪→ L2 ↪→ W−1,2. To the extent that one can view the latter as
a minimal theory of the Kolmogorov backward equation, the present paper bridges the
Eulerian and Lagrangian descriptions of diffusion:

Euler ←→ Lagrange.

Here:

• Eulerian viewpoint: one studies averaged quantities, such as temperature or con-
centration, governed by the heat equation or, more generally, by transport-diffusion
PDEs.

• Lagrangian viewpoint: one follows individual molecules whose trajectories solve SDEs
(Brownian motion in the simplest case).

Until quite recently, Lagrangian results required stronger regularity assumptions on the
drift. One can argue that the Lagrangian picture offers finer detail.

We refer to the equivalence (A1)-(A3) ⇔ (1.6) as the “generalized form-boundedness”,
although Mazya and Verbitsky [MV] call (1.6) simply the form-boundedness condition on
c.
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Let us comment on why one would expect the Kolmogorov equation to be well-posed
in the standard Hilbert tripe. In fact, we already can substantially relax the conditions
on drift b by requiring well-posedness of the Kolmogorov backward equation in the shifted
triple of Bessel spaces W 3

2 ,2 ↪→ W 1
2 ,2 ↪→ W− 1

2 ,2, see Theorem 7.1. Doing so, however,
forces us to drop the distributional part q, lose at least for now the almost optimal
dimension-independent condition (A4) and precludes discontinuous diffusion coefficients.
By contrast, under (A1)-(A4) we can allow discontinuous diffusion coefficients σ for which
the associated non-divergence operator can still be rewritten in divergence form (Theorem
6.1). Such diffusion coefficients keep us within the standard Hilbert tripe W 1,2 ↪→ L2 ↪→
W−1,2, as discussed in Section 6.

– Near-optimality of the bound (A4). Consider the SDE

Xt = x−
√
δ
d− 2

2

ˆ t

0

Xs

|Xs|2
ds+

√
2Bt, (1.7)

where Bt is the d-dimensional Brownian motion, d ≥ 3. The drift here, b(x) =
√
δ d−2

2
x

|x|2 ,
belongs to Fδ, see Section 3 for a detailed explanation. Theorems 5.1 and 8.1 show that if
(A4) is satisfied, then there exists a strong Markov family of weak solutions to SDE (1.7),
and these weak solutions are unique in an appropriate sense. Moreover, in the critical case
δ = 4 there is still a sufficiently rich theory of the corresponding Kolmogorov backward
PDE, see Remark 5.1. On the other hand, taking advantage of the anti-symmetry of the
drift, one can show that Rt = |Xt|2 is a squared Bessel process (see, e.g. [BFGM]) and
therefore:

(a) If

δ ≥ 4

(
d

d− 2

)2

,

then for every initial point solution arrives at the origin in finite time with probability 1,
and stays there indefinitely (that is, Rt = 0 for all t ≥ τ for some finite stopping time
τ). A simple argument shows that for such δ SDE (1.7) does not have a weak solution
departing from x = 0, see e.g. [BFGM].

(b) If

4 < δ < 4

(
d

d− 2

)2

,

then solution still visits the origin infinitely many times, but does not stay there, i.e.
´∞
0
Rtdt <

∞ a.s.
In Section 4 we discuss similar counterexamples in the context of particle system in-

ntroduced in Example 1.1.

Remark 1.1. The fact that (1.6) implies (A1)–(A3) is proved in [MV] by taking b and q from
the Hodge-type decomposition of c:

b := −∇(1−∆)−1div c+ (1−∆)−1c, (1.8)

q := −(1−∆)−1curl c. (1.9)
Here, b caputres the attractive or the repulsive part of the drift in the dynamics of Xt.

Much more is already known when the entire drift belongs to the form-bounded class Fδ: one
has strong well-posedness for the SDE, as well as well-posedness for the associated stochastic
transport equation, see Theorem 5.2. How far these results extend when a non-zero distributional
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component q in BMO−1 is present is still unclear: if we insist on the decomposition (1.8), (1.9)
above, Theorem 5.1 would treat only gradient-type drifts, which we want to avoid.

1.1.2. Blow ups. In Section 8 we will also discuss drifts having critical (form-bounded) divergence,
which allows to relax the assumptions on the drift to some super-critical conditions, i.e. passing
to the small scales actually increases the norm of the drift. The sub-critical/critical/super-critical
classification of the spaces of vector fields, widely used in the literature, is recalled in Remark 8.2.
It should be added, however, that this classification is not so relevant to the main body of the
present paper (except for Section 8) because:

(a) Our main focus is on general drifts, for which one only has the dichotomy sub-critical/critical.
(b) This classification does not distinguish between critical spaces that do, and those that do

not, reach blow-ups.
(Regarding (b), for example, both Ld and weak Ld spaces are critical, but only the weak Ld

space contains drift C x
|x|2 whose attracting singularity at the origin is strong enough to kill the

weak well-posedness of the SDE if C is too large. In other words, in the critical case, a lot depends
on the definition of the norm of the drift.)

If a critical class of drifts is broad enough to contain blow-up examples, a well-posedness
theorem must include a smallness condition on the drift norm, such as e.g. (A4).

Compared with blow-ups for the Navier–Stokes equations, the mechanism of blow-ups in parti-
cle systems of the kind treated in Example 1.1 is much better understood [CP, CPZ, FJ, FT, JL].
That said, as was noted in [FJ], at the time of writing of their article there was still a substantial
gap between (i) the drift singularities that the general theory of SDEs with singular drifts could
handle and (ii) the even stronger singularities they themselves had to treat. One of the purposes
of the present work, together with [KS2, K6, KS6], is to close this gap:

SDEs with general singular drift −→ particle systems, (1.10)

i.e. to bring the general theory of SDEs “up to the task” so that it can handle blow ups. See,
in particular, Section 7 where we demonstrate how the weak well-posedness of the finite-particle
Keller-Segel SDE in R2N can, in principle, be reached from an earlier result in [KS1] on SDEs
with general drifts. Interestingly, the path that leads to this passes through non-local operators
(Theorem 7.1 and Corollary 7.1).

The same connection (1.10) was already pursued by Krylov and Röckner [KrR], but with
a different interaction kernel: its attractive part can be extremely singular, but it is always
dominated on average (not pointwise) by the repulsive part, so no blow-up occurs.

1.2. Result #2. As mentioned earlier, in Section 8 we will also discuss super-critical drifts (nec-
essarily under additional assumptions on their divergence). Specifically, if the positive part of the
divergence div b is a form-bounded potential, then this enables us to relax the form-boundedness
condition on b to a super-critical form-boundedness condition:

|b|
1+ν
2 ∈ Fδ, ν ∈]0, 1[, δ <∞.

In this case one still has weak existence for every initial point. This was alrady proved in [KS2].
Moreover, as it was outlined in [KS2], one can combine such a drift with an ordinary form-bounded
component, again reaching the blow-up threshold, and may also include discontinuous diffusion
coefficients of the type treated in Section in Section 6.

Generally speaking, in super-critical settings many standard regularity properties of the diffu-
sion process are lost. Some of them can be saved, but to recover most of them one must impose
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additional critical conditions on the drift. In our framework, to establish e.g. the Markov property,
Theorem 8.3 supplements the super-critical asumption with the multiplicative form-boundedness
condition b ∈MFδ, i.e.

⟨|b|φ,φ⟩ ≤ δ∥∇φ∥2∥φ∥2 + cδ∥φ∥22, φ ∈ C∞
c (Rd), δ <∞.

This condition is critical and is substantially more general than b ∈ Fδ because somehow it implic-
itly presumes the existence of div b. In contrast to the form-bounded class Fδ, the multiplicative
form-bounded class MFδ can be completely characterized in elementary terms: b ∈MFδ if and
only if

⟨|b|1Br(x)⟩ ≤ Cr
d−1

with constant C independent of r or x ∈ Rd. The latter is the largest scaling-invariant Morrey2

class M1. In fact, we have

|b| ∈M1

b ∈MFδ for some finite δ and cδ = 0 b ∈ BMO−1

form-bounded (div b)+

����
��
��
��
��
��
��
��
��
��
��
��
��
CC��������������������������

div b=0

��6
66

66
66

66
66

66
66

66
66

66
66

66
6

where the arrow→ in this diagram means inclusion. (These inclusions were proved in [M, Theorem
1.4.7] and [MV2, Theorem V]. See discussion before Theorem 8.3 and the proof in Appendix D.)
Choosing the inclusion into MFδ leads to an approach to studying the Kolmogorov backward
equation based on “Caccioppoli’s iterations” for establishing the classical Caccioppoli’s inequality
[KV], see Remark 8.1 for details; choosing the inclusion into BMO−1 amounts to absorbing the
stream matrix Q (for b = ∇Q) into the diffusion coefficients and obtaining a Caccioppoli-type
inequality from there [H, SSŠZ]. We discuss this in Section 8.

1.3. Result #3. As an application of our results on SDEs (Theorem 8.1) and of the theory of
Bessel processes, we obtain an upper bound on the best possible constant Cd,N in the many-
particle Hardy inequality

Cd,N
∑

1≤i<j≤N

ˆ
RNd

|φ(x)|2

|xi − xj |2
dx ≤

ˆ
RNd

|∇φ(x)|2dx ∀φ ∈ C∞
c (RNd)

(Theorem 8.2). Our upper bound on Cd,N improves the existing results by replacing factorial
growith in the dimension with polynomial growth. It also shows that the lower bound on Cd,N
obtained earlier by Hoffmann-Onstenhof–Hoffmann-Onstenhof-Laptev-Tidblom [HHLT] is nearly
optimal – at least in high dimensions.

To our knowledge, this is the first time a probabilistic argument is used in the analysis of the
best possible constant in a Hardy inequality.

2For the theory of Morrey spaces and related estimates, see Adams-Xiao [AX] and Krylov [Kr5].
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1.4. Literature. Let us now comment on the existing literature on SDEs with singular drifts,
focusing mostly on general drifts.

1) The present paper continues [KS7, KS2, K5, K6, KS6]. This series of papers was initiated by
Semënov and the first author in [KS1]. Building on the PDE results in [K1], that paper considered
weak solutions to SDEs whose drifts that lie in a class even larger than Fδ, namely, the class of
weakly form-bounded vector fields. This larger class contains, for example, the Morrey class M1+ε,
and therefore vector field (1.3); however, that result requires more restrictive condition δ < c

d2

(see Section 7). In all those earlier works one has q = 0 and σ = I (excelpt [KS7]). Allowing
a non-zero distributional q ̸= 0 drift, as in (A1)-(A4), necessitated substantial modifications of
the arguments in [KS2, K6, KS6], in particular the systematic use of compensated-compactness
estimates.

2) If we restrict attention to Borel-measurable drifts, the most closely related results are the
recent works of Krylov [Kr1, Kr2, Kr3, Kr4] and of Röckner and Zhao [RZ]. Their approaches
differ from ours, both herein and in [KS7, KS2, K5, K6, KS6]. In particular, in [Kr1] Krylov treats
a class of diffusion coefficients much larger than ours (his diffusion coefficients are in VMO class,
or have small BMO norm), but a smaller class of drifts (namely, the Morrey class M d

2+ε
). The

author’s analysis requires estimates on second-order derivatives of solutions to the Kolmogorov
backward equation, whereas we neither assume nor have such estimates under our assumptions
on the drift. Krylov’s drifts can also produce blow-up phenomena, but he assumes that the size
of the singularity, measured by the Morrey norm, remains below a small, dimension-dependent
constant. By contrast, our goal is to reach the maximal admissible strength of singularity (in
Example 1.1, the interaction strength κ; or the supremum (1.2)). Other recent results of Krylov
are described at various points in this work.

Let us add that, even if we restrict our attention to Borel measurable drifts, in our setting
Zvonkin transform is not applicable and our drifts are not of Girsanov type.

3) Some techniques such as De Giorgi’s method also connect our paper to the works of Zhang-
Zhao [ZZ1] and Hao-Zhang [HZ], which focus on super-critical divergence-free drifts (in [HZ],
distributional). Some of their results deal with non-zero divergence, but they do not reach blow
ups.

4) There is rich literature on SDEs with general distributional drifts, also motivated by physical
applications. In all the results we are aware of, the diffusion coefficients σ have to be at least
Hölder continuous. Many of these works treat time-inhomogeneous drifts, however, in this brief
discussion we will specify these results to time-homogeneous drifts. Flandoli-Issoglio-Russo [FIR]
and Zhang-Zhao [ZZ2] study drifts that belong to Bessel potential spaces with negative index and
employ the Zvonkin transform to obtain weak well-posedness for SDE (1.1). Chaudru de Raynal-
Menozzi [CM] proved, among other results, weak well-posedness with drift b in Besov space Bβp,q
with −1

2 < β ≤ 0 and p > d. They addressed, in particular, the problem of defining the product of
two distributions b · ∇v, where v is a solution to the Kolmogorov backward equation. The latter,
in turn, dictates their restriction β > −1

2 . Earlier, Delarue-Diel [DD] and Cannizzaro-Chouk [CC]
proved, in dimensions d = 1 and d ≥ 2, respectively, well-posedness of the martingale problem for
general distributional drifts in Hölder-Besov space Bβ∞,∞ for all −2

3 < β ≤ 0. In the more singular
regime −2

3 < β ≤ −1
2 they assume that the drift can be enhanced to a rough distribution, in

order to apply the theory of paracontrolled distributions. This allowed them to consider random
drifts of the form b = ∇h, where h is a solution of a KPZ-type equation, and thereby construct
the polymer measure with white noise potential. As mentioned earlier, the class of divergence-
free drifts BMO−1 contains drifts whose components lie in Besov space B−1+d/p

p,∞ , p > d, i.e. the
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exponent β = −1 + d/p can go up to −1. This, however, cannot serve as a comparison with the
previous cited results since by definition BMO−1 drifts are divergence-free, but this justifies to
some extent why we do not address in this paper the problem of mutiplying distributions in the
Kolmogorov equation, i.e. since our β ̸> −1

2 .
5) Let us also mention recent papers by Chaudru de Raynal-Jabir-Menozzi [CJM, CJM2] where

the authors handle McKean-Vlasov SDEs with distributional Besov drifts. The regularization by
convolution allows them to venture substantially farther in the assumptions on the drift, compared
to the papers cited in 4). It is quite noteworthy, since they can start with a delta-function in the
initial distribution.

The papers on general distributional drifts mentioned in 4) and 5) do not reach blow ups,
in contrast to our Theorems 5.1, 6.1, 8.1. That said, the cited works cover some other highly
irregular drifts that fall outside the scope of our hypotheses.

Finally, we mention Bresch-Jabin-Wang [BJW] who consider gradient-form singular attracting
drifts that allow blow ups. Their focus is different, namely, it is quantiative propagation of chaos
at the PDE level, but they are also interested in reaching the blow up thresholds. Their their
drifts are not included in our setting.

6) Regarding super-critical drifts, we refer again to the earlier paper by Zhang-Zhao [ZZ1],
as well as to recent papers by Hao-Zhang [HZ] and Gräfner-Perkowski [GP] where the authors
consider super-critical distributional drifts. In [GP], the authors treat divergence-free drifts Besov
drifts b ̸∈ B−1

2d(d+2)−1,2, provided that the initial density is absolutely continuous with respect to
the Lebesgue measure; they also consider quite irregular attracting/repulsing component of the
drift, although it does not reach the blow ups.

Comprehensive surveys of the literature on SDEs with singular and distributional drifts can be
found in [CM] and [HZ].

1.5. Main instruments: De Giorgi’s method, Trotter’s theorem and compensated
compactness estimates. Since the drift c satisfying (1.6) is in general distribution-valued (c =
b + q) we actually have to give a proper meaning to term c(Xs) in SDE (5.1). We will do it in
two ways:

– Theorem 5.1(iv): At the level of the martingale problem and with the Itô expansion, we have
to define (c · ∇v)(Xs) for suitable test functions. The usual test functions in C∞

c cannot be used,
but it is still possible to find a sufficiently rich space of test functions (in particular, dense in C∞;
see notations in Section 2) that will give us a continuous martingale. In fact, this space of test
functions will be the domain of the generator Λ ⊃ −∆ + c · ∇ of a strongly continuous Feller
semigroup in C∞.

– Theorem 5.1(v): By constructing the “limiting drift” process (called “formal dynamics” in
[CM]) for disperse initial data, assuming δ < 1. This is a result of Bass-Chen type [BC], see
also Zhang-Zhao [ZZ2], Chaudru de Raynal-Menozzi [CM] and Hao-Zhang [HZ] who have similar
results. The proof will use convergence of the martingale solutions of the approximating SDEs
(5.2) that will follow as a by-product of (a).

To construct the sought Feller semigroup, we will have to employ some deep results from the
operator theory, the theory of PDEs and harmonic analysis:

– Trotter’s approximation theorem,
– De Giorgi’s method in Lp for p > 2

2−
√
δ
, i.e. in the context of Example 1.1, p will be an

explicit function of the strength of attraction between the particles κ.
– Compensated compactnes esimates and BMO-multipliers.
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A crucial feature of Trotter’s approximation theorem (Theorem 10.1) is that it requires no
a priori knowledge of the limiting object, i.e. in our case, the limiting Feller semigroup. By
contrast, in some other of our results on singular SDEs (such as Theorem 7.1) we first construct
an explicit candidate for the Feller resolvent. This simplifies approximation arguments, but it
also automatically provides strong gradient bounds that, in turn, introduce dimension-dependent
restrictions on the form bound δ. As the dimension grows, the admissible range of δ shrinks to
the empty set, making problematic possible applications to many-particle systems that exist in
spaces of very large dimension. (Example 5.1 explains how a bound on δ translates into a bound
on the attraction strength κ.) Using De Giorgi’s method in the proof of Theorem 5.1 decouples
gradient bounds from the bounds that provide the existence of the weak solution (i.e. tightness
argument, construction of the Feller semigroup, etc). Consequently, we can impose dimension-free
assumptions on δ, which is a crucial point for applications to many-particle systems.

De Giorgi’s method for divergence-form operators with drift in BMO−1 has also been applied,
in different contexts, by Hara [H] and Seregin-Silvestre-Šverak-Zlatoš [SSŠZ].

The problem of constructing Feller generator realization of −∆+ b · ∇, b ∈ Fδ was addressed
earlier in [KoS, K1, K7, KS6] (under dimension-dependent conditions on δ except the last cited
paper). For such b, one can also solve the classical martingale problem and, moreover, establish
strong existence and conditional uniqueness, see Theorem 5.1; the Feller semigroup is one of several
properties of the process. In the case of a distributional drift c, however, the Feller semigroup
plays an even larger role since it also allows to address the difficulty with evaluating distributional
drift along a trajectory.

1.6. Structure of the paper.

Section 4 We begin with a preliminary discussion of blow-up thresholds for the particle system in
1.1. These thresholds both illustrate the sharpness of our SDE results and serve as input
in Section 8, where they enter the proof of a sharper upper bound for the constant in the
many-particle Hardy inequality (Theorem 8.2).

Sections 5 Theorem 5.1 is our main result when the diffusion matrix is constant. Theorem 5.2 surveys
what is currently known about SDEs with form-bounded drifts, meaning drifts with no
distributional component in BMO−1, including strong solutions, conditional uniqueness,
and regularity for the associated stochastic transport equation.

Section 6 Theorem 6.1 extends the analysis to diffusion matrices that may have critical discontinu-
ities.

Section 7 Corollary 7.1 shows, in principle, how well-posedness of the finite-particle Keller–Segel
system can be derived from an earlier result on SDEs with general singular drifts (Theo-
rem 7.1). The proof of that theorem uses a more operator-theoretic approach, based on
fractional resolvent representations, and covers the larger class of weakly form-bounded
drifts that contains both the Morrey class M1+ε and the Kato class studied by Bass-Chen
[BC]. We also comment in this section on general time-inhomogeneous drifts with critical
singularities both in time and space.

Section 8 Theorems 8.1 and 8.3 treat drifts whose divergence satisfies a critical (scaling-invariant)
form-boundedness condition, with the distributional part set to zero. Under this assump-
tion we can relax the constraint on |b|, allowing some super-critical form-boundedness
conditions. As an application, Theorem 8.2 gives an improved upper bound on the con-
stant in the many particle Hardy inequality.



SDES WITH SINGULAR DRIFT 11

Section 9 We make a few more comments regarding De Giorgi’s method in Lp, the optimal choice of
test function in the analysis of Kolmogorov backward equation, and time-inhomogeneous
drifts.

Acknowledgements. We are grateful to Galia Dafni and Jean-François Jabir for very useful
discussions.

2. Notations and auxiliary results

Throughout this work we use the following notations.

1. B(X,Y ) is the space of bounded linear operators X → Y between Banach spaces X, Y ,
endowed with the operator norm ∥ · ∥X→Y . Put B(X) := B(X,X).

The space of d-dimensional vectors with entries in X is denoted by [X]d. We reserve the upper
index to denote the components qi ∈ X of q ∈ [X]d.

The notation “ w→ in X” stands for the weak covergence in X. Similarly for [X]d.
We write

T = s-Y - lim
n
Tn

for T , Tn ∈ B(X,Y ) if
lim
n
∥Tf − Tnf∥Y = 0 for every f ∈ X.

By T ↾ X we denote the restriction of operator T to a subspace X ⊂ D(T ).
By
[
T ↾ X

]clos
Y→Y

we denote the closure of the restriction T ↾ X (when it exists).

2. The space Lp = Lp(Rd, dx), W 1,p = W 1,p(Rd, dx) corresponds to the Lebesgue and to the
Sobolev space, respectively. Let Lpρ = Lp(Rd, ρ(x)dx) denote the weighted Lebesgue space with
weight ρ (defined by formula (2.1) below).

Set ∥ · ∥p := ∥ · ∥Lp and denote operator norm ∥ · ∥p→q := ∥ · ∥Lp→Lq .
Given 1 < p <∞, we set p′ := p

p−1 .
Put

⟨f, g⟩ = ⟨fg⟩ :=
ˆ
Rd

fgdx

(all functions considered in this paper are real-valued). For vector fields b, f : Rd → Rd, we put

⟨b, f⟩ := ⟨b · f⟩ (· is the scalar product in Rd).

Cc (resp. C∞
c ) denotes the space of continuous (infinitely differentiable) functions on Rd having

compact support.
Cb is the space of bounded continuous functions on Rd endowed with the sup-norm, and Ckb is

the subspace of bounded continuous functions with bounded continuous derivatives up to order
k.
C∞ is a closed subspace of Cb consisting of functions vanishing at infinity.
We denote by S the Schwartz space, and by S ′ the space of tempered distributions on Rd.
Put

Γc(t, x) = Γ(ct, x) := (4cπt)−
d
2 e−

|x|2
4ct ,

the Gaussian density.
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Set

γ(x) :=

{
c exp

(
1

|x|2−1

)
if |x| < 1,

0, if |x| ⩾ 1,

where c is adjusted to
´
Rd γ(x)dx = 1, and put γε(x) := 1

εd
γ
(
x
ε

)
, ε > 0, x ∈ Rd. Define the De

Giorgi mollifier of a function h ∈ L1
loc (or a vector field with entries in L1

loc) by

Eεh := eε∆h.

Br(x) denotes the open ball of radius r centered at x ∈ Rd. If x = 0, we simply write Br.
Given a function f ∈ L1

loc, we denote by (f)Br(x) its average over the ball Br(x):

(f)Br(x) :=
1

|Br|

ˆ
Br(x)

fdx.

If x = 0, then we write (f)r ≡ (f)Br .
We denote the positive and negative parts of function f by

(f)+ := f ∨ 0, (f)− := −(f ∧ 0).

Let ∇i = ∂xi , 1 ≤ i ≤ d.
Define weight

ρ(y) ≡ ρϵ0(y) = (1 + σ|y|2)−
d+ϵ0

2 , ε0 > 0, σ > 0. (2.1)
This weight has property

|∇ρ| ≤ d+ ϵ0
2

√
σρ. (2.2)

In the same way, |∇ρ−1| (= |∇ρ|
ρ2 ) ≤ d+ϵ0

2

√
σρ−1. (The last two inequalities will allow us to

replace all occurrences of ∇iρ or ∇iρ−1 resulting from the integration by parts in the analysis
of PDEs in weighted spaces by the weight ρ itself or ρ−1, respectively, times a constant that is
proportional to

√
σ. This constant can be made arbitrarily small by fixing σ sufficiently small.

We will use this to get rid of the terms containing ∇iρ or ∇iρ−1.) Put

ρx(y) := ρ(x− y).

3.Let C and D denote the canonical spaces of continuous and càdlàg trajectories from [0,∞[
to Rd equipped with the uniform topology and the Skorohod topology, respectively, endowed with
the natural filtration Bt = σ{ωs | 0 ≤ s ≤ t}, where ωt is the coordinate process.

Let P(C) and P(D) denote the space of probability measures on C and D, respectively.
Recall that a probability measure Ps,x (s ≥ 0, x ∈ Rd) on C is said to be a classical martingale

solution to SDE

Xt = x−
ˆ t

s

b(r,Xr)dr +
√
2(Bt −Bs), x ∈ Rd, t ≥ s, (2.3)

with a time-inhomogeneous drift b ∈ L1
loc(R1+d)d if Ps,x[ωs = x] = 1,

EPs,x

ˆ t

s

|b(r, ωr)|dr <∞

and for every v ∈ C2
c

t 7→ v(ωt)− x+

ˆ t

s

(−∆+ b · ∇)v(ωr)dr, t ≥ s,

is a continuous martingale with respect to Ps,x.
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If b does not depend on time, then we take s = 0, and in the above martingale problem write
Px.

4. BMO functions. (a) A function g ∈ L1
loc is in class BMO = BMO(Rd) if

∥g∥BMO := sup
x∈Rd,R>0

1

|BR|

ˆ
BR(x)

|g − (g)BR(x)|dy <∞.

One can also define the BMO semi-norm as

∥g∥BMO =

(
sup

x∈Rd,R>0

1

|BR|

ˆ
BR(x)

ˆ R2

0

|∇et∆g|2dtdy
) 1

2

(2.4)

(this is Carleson’s characterization of BMO functions).

(b) We will need the compensated compactness estimate of Coifman-Lions-Meyer-Semmes:

Proposition 2.1 ([CLMS]). There exists a constant Cd such that for every anti-symmetric matrix
field Q with entries in BMO one has

|⟨Q · ∇f,∇g⟩| ≤ Cd∥Q∥BMO∥∇f∥2∥∇g∥2, ∀ f, g ∈W 1,2.

(c) Qian-Xi [QX] employed in their work the following modification of the previous proposition.
We will need it as well.

Proposition 2.2. There exists a constant Cd such that, for each function h ∈ BMO, i = 1, . . . , d,

|⟨h, g∇ig⟩| ≤ Cd∥h∥BMO∥∇g∥2∥g∥2, ∀ g ∈W 1,2.

(d) The following result on the multipliers in space BMO on Rd follows from the analysis of
Nakai-Yabuta in [NY] (see, in particular, Sect. 5 in their paper).

Lemma 2.1. Set ξ(y) := yi
1+σ|y|2 (σ > 0). Then we have

∥ξh∥BMO ≤ Cd,σ∥h∥′BMO ∀h ∈ BMO,

where ∥h∥′BMO := ⟨1B1(0)h⟩+ ∥h∥BMO is the BMO-norm.

We will apply Lemma 2.1 in the proof of Theorem 5.1, to ξ(y) = ∇iρ
ρ = 2σyi

1+σ|y|2 , where ρ is the
weight introduced above.

3. Singular drifts

3.1. Definitions and examples. The following classes of singular or distributional drifts are
covered by our Theorems 5.1, 6.1, 8.1.

3.1.1. Form-bounded vector fields.

Definition 3.1. A vector field b ∈ [L2
loc]

d is said to be form-bounded with form-bound δ > 0
(abbreviated as b ∈ Fδ) if

∥bφ∥22 ≤ δ∥∇φ∥22 + cδ∥φ∥22 ∀φ ∈W 1,2 (3.1)

for some constant cδ <∞.
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The constant cδ does not affect the well-posedness of SDE (5.1) (one needs cδ > 0 to include L∞

drifts). By contrast, δ is crucial: if δ exceeds the critical threshold δ = 4, then in general SDE (5.1)
ceases to have global in time weak solution (a blow up occurs). On the other hand, as Theorems
5.1 and 5.2 show that wnenever δ < 4, weak well-posedness holds. Moreover, as δ ↓ 0, this theory
becomes more detailed, e.g. one has conditional weak uniqueness, strong well-posedness, etc. The
form-bound δ appears explicitly in the examples below.

Examples 3.1. 1. If b ∈ [Ld]d + [L∞]d (= sums of vector fields in [Ld]d and in [L∞]d), then
b ∈ Fδ with form-bound δ that can be chosen arbitrarily small at the expense of increasing the
constant cδ. Indeed, for every ϵ > 0 one can represent b = b1+ b2 with ∥b1∥d < ε and ∥b2∥∞ <∞.
By the Sobolev embedding theorem,

∥bφ∥22 ≤ 2∥b1∥2d∥φ∥22d
d−2

+ 2∥b2∥2∞∥φ∥22

≤ CS2∥b1∥2d∥∇φ∥22 + 2∥b2∥2∞∥φ∥22,

so b ∈ Fδ with δ = CS2ϵ and cδ = 2∥b2∥2∞.
2. The class of form-bounded vector fields contains the weak Ld class:

∥b∥d,∞ := sup
s>0

s|{y ∈ Rd | |b(y)| > s}|1/d <∞

⇒ b ∈ Fδ with δ = ∥b∥d,∞|B1(0)|−
1
d

2

d− 2

with cδ = 0. This was proved in [KPS, Lemma 2.7].
3. The weak Ld class includes itself the Hardy drift:

b(x) = ±
√
δ
d− 2

2
|x|−2x ∈ Fδ with cδ = 0 (but b ̸∈ Fδ′ with any δ′ < δ, cδ′ <∞). (3.2)

In fact, inclusion (3.2) is a re-statement of the usual Hardy inequality

∥|x|−1φ∥22 ≤
4

(d− 2)2
∥∇φ∥22.

The plus sign in (3.2) corresponds in SDE (5.1) to the attraction towards the origin, the minus
corresponds to the repulsion.

4. The previous example can be refined using the weighted Hardy inequality of Hoffmann-
Ostenhof–Laptev [HL]. Fix

0 ≤ Φ ∈ Ls(Sd−1) for some s ≥ 2(d− 2)2

2(d− 1)
+ 1,

where Sd−1 is the unit sphere in Rd. If

|b(x)|2 ≤ δ (d− 2)2

4
c
Φ(x/|x|)
|x|2

, where c :=
|Sd−1|

1
q

∥Φ∥Ls(Sd−1)

,

then b ∈ Fδ with cδ = 0. Using this example, one can e.g. cut holes in the drift (3.2) while still
controlling the value of δ.

5. One can also refine example (3.2) using a Hardy-type inequality of Felli-Marchini-Terracini
[FMT, Lemma 3.5]. Assume that

|b(x)|2 ≤ δ (d− 2)2

4

∞∑
i=1

1Br(ai)(x)

|x− ai|2
, x ∈ Rd,
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where the loci of singularities {ai}∞i=1 are sufficiently “spread out”:
n∑
i=1

|ai|−d+2 <∞,
∞∑
k=1

|ai+k − ai|−d+2 is bounded uniformly in i,

and |ai − am| ≥ 1 for all i ̸= m. Then there exists r sufficiently small (so, the singularities are
strictly local) so that b ∈ Fδ with cδ = 0.

6. The following simple lemma applies, in particular, to the multi-particle Hardy drift b : RNd →
RNd defined by (1.5) in Example 1.1.

Lemma 3.1 ([K6, Lemma 1]). If K ∈ Fκ(Rd), then the drift b = (b1, . . . , bN ) : RNd → RNd with
components defined by

bi(x
1, . . . , xN ) :=

1

N

N∑
j=1,j ̸=i

K(xi − xj), xi, xj ∈ Rd

is in Fδ with

δ =
(N − 1)2

N2
κ,

i.e. there is almost equality between δ and κ. (In the context of Example 1.1 κ is the strength of
attraction between the particles.)

7. Critical Morrey class. Every vector field b ∈M2+ε for some ε > 0 small, i.e.

∥b∥M2+ε := sup
r>0,x∈Rd

r

(
1

|Br|

ˆ
Br(x)

|b(y)|2+εdy
) 1

2+ε

<∞,

is in Fδ with δ = C(d, ε)∥b∥M2+ε and cδ = 0. The constant C = C(d, ε) depends on the constants
in some fundamental inequalities of harmonic analysis [Fe]. There exist far-reaching and deep
extensions of this inclusion due to Adams [A1] (Appendix C) and Chiarenza-Frasca [CF].

The Morrey class M2+ε is substantially larger than the weak Ld class, e.g. it includes vector
fields having strong hypersurface singularities. It is easily seen that the class M2+ε gets larger
as ε gets smaller. Note, however, that by passing through the Morrey class one to a large extent
loses the control over the form-bound δ.

On the other hand, the form-bounded class Fδ (with cδ = 0) is contained in the Morrey class
M2; this is not difficult to see by selecting cutoff functions as test function φ in the definition of
Fδ. Thus, to summarize,

∪ε>0M2+ε ⊊ ∪δ>0Fδ (with cδ = 0) ⊊ M2.

8. A larger class than ∪ε>0M2+ε sub-class of Fδ was found by Chang-Wilson-Wolff [CWW],
that is, |b| ∈ L2

loc(Rd) and

sup
r>0,x∈Rd

1

|Br|

ˆ
Br(x)

|b(y)|2 r2ξ
(
|b(y)|2 r2

)
dy <∞, (3.3)

where ξ : R+ → [1,∞[ is a fixed increasing function such thatˆ ∞

1

ds

sξ(s)
<∞.

For instance, one can take ξ(s) = 1+(log+ s)1+ϵ or ξ(s) = 1+log+ s(log log+ s)1+ϵ for some ϵ > 0
(but not ξ(s) = 1 + log+ s).
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The Lebesgue, weak Lebesgue, Morrey, and Chang–Wilson–Wolff classes are all elementary
sub-classes of Fδ. We regard estimating an integral over a ball as an “elementary” calculation.
This is admittedly subjective, but in practice one can carry it out quite easily for a concrete vector
field. By contrast, computing an operator norm for a given vector field (or equivalently checking
a quadratic-form inequality) often requires more advanced tools, such as various forms of Hardy’s
inequality.

9. There are also deep necessary and sufficient conditions for ensuring that b ∈ Fδ, such as the
crtierion of Kerman-Sawyer [KSa] or the criterion of Mazya [M2]. The latter is

⟨1E |b|2⟩ ≤ Kcap(E) ∀ compact E ⊂ Ed, (3.4)

where, recall,
cap(E) = inf{∥∇v∥2 | v ∈ C∞

c , v ≥ 1 on E}.
So, criterion (3.4) requires computing the capacity of an arbitrary compact set (one cannot restrict
to dyadic cubes only). Kerman-Sawyer’s inequality that needs to be verified is more complex than
(3.4), but the calculations are confined to dyadic cubes, so it is in some sense more practical. That
said, precisely because these are necessary and sufficient conditions, their verifications can be non-
trivial (for example, verifying that the Chang-Wilson-Wolff class (3.3) satisfies these conditions,
see [CWW]).

Efforts to characterize inequalities of type (3.1), known as trace inequalities, remains an active
research area. The interest was originally motivated by the problems related to estimating the
spectrum of Schrödinger operators, cf. [Fe, MV].

Finally, we note that we can combine the previous examples:

b1 ∈ Fδ1 , b2 ∈ Fδ2 ⇒ b1 + b2 ∈ Fδ, δ = (
√
δ1 +

√
δ2)

2.

This, of course, extends to series of form-bounded drifts.

3.1.2. Bounded mean oscillation−1.

Definition 3.2. A divergence-free vector field q = (qi)
d
i=1 ∈ [S ′]d is said to be in class BMO−1

if there exist functions Qij = −Qji ∈ BMO(Rd) such that

qi =
d∑
j=1

∇jQij , 1 ≤ i ≤ d,

i.e. q = ∇Q, where ∇ is the row-divergence operator.

Examples of BMO functions include

g ∈ L∞ or g(x) = log |p(x)| for a polynomial p.

In the last example the BMO semi-norm does not depend on the coefficients of p.

Examples 3.2. 1. A divergence-free vector field q belongs to BMO−1 if and only if the caloric
extensions of its components qi, i = 1, . . . , d, satisfy

sup
x∈Rd,R>0

1

|BR|

ˆ
[0,R2]×BR(x)

|et∆qi|2dtdy <∞,

where et∆ is the heat semigroup, see [KT].
Equivalently, qi can be characterized as elements of homogeneous Triebel-Lizorkin space Ḟ−1

2,∞.
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2. The divergence-free vector fields with entries in Morrey space M1, i.e. such that

⟨|q|1Br(x)⟩ ≤ Cr
d−1

with constant C independent of r or x ∈ Rd, are in BMO−1 [M, Sect. 3.4.5].
3. The divergence-free vector fields with entries in Besov space B−1+d/p

p,∞ , p > d, are in BMO−1.
This follows by recalling that B−1+d/p

p,∞ consists of tempered distribution h such that

∥et∆h∥p ≤ Ct−
1− d

p
2 , 0 < t ≤ 1,

see [KT] for details.

In [KT], Koch and Tataru established, among other results, the existence and the uniqueness of
global in time mild solution to Cauchy problem for the 3D Navier-Stokes equations in the critical
space Z of functions v : R+ × Rd → R3 satisfying

∥v∥Z := sup
t≥0

t
1
2 ∥v(t)∥∞ +

(
sup

x∈Rd,R>0

1

|BR|

ˆ
[0,R2]×BR(x)

|v(t, y)|2dtdy
) 1

2

<∞, (3.5)

provided that the initial data v(0) ∈ BMO−1(R3) have sufficiently small norm. (An even larger
BMO−1 type space is considered in the recent paper [CE].)

3.1.3. Multiplicatively form-bounded vector fields. This class of drifts was mentioned in the intro-
duction (class MFδ). We postpone its discussion until Section 8.

3.2. Physical approximations. We now introduce the classes of bounded smooth approxima-
tions of vector fields in Fδ and BMO−1 that preserve the “structure constants” of the latter.

Definition 3.3. Given b ∈ Fδ, we denote by [b] the set of sequences of vector fields {bn} ⊂
[Cb ∩ C∞]d such that {

bn ∈ Fδ with the same cδ as b,
bn → b in [L2

loc]
d (3.6)

(note that we can always increase cδ, if needed; what matters is that cδ does not depend on n).

For instance, the sequence {bn} defined by bn := Eεnb (De Giorgi mollifier Eε is defined in
Section 2) for any εn ↓ 0 is in [b]. See [KS4] or [K6, Sect. 6] for the proof.

In the quantum-mechanical context, the form-boundedness condition on potential |b|2 expresses
smallness of the potential energy with respect to the kinetic energy in the system described by
the Hamiltonian −∆− |b|2. Our conditions on regularizations {bn} is thus that they, essentially,
do not increase the potential energy.

Given a potential 0 ≤ V ∈ L1
loc, we write, with some abuse of notation, V

1
2 ∈ Fδ+ if

⟨V, φ2⟩ ≤ δ+⟨|∇φ|2⟩+ cδ+⟨φ2⟩ ∀φ ∈ C∞
c .

Definition 3.4. Let

b ∈ Fδ, (div b)
1
2
+ ∈ Fδ+ , (div b)− ∈ L1 + L∞,

we denote by [b]′ the set of sequences of vector fields {bn} ⊂ [C1
b ∩C∞]d that satisfy the previous

inclusions with the same constants δ, cδ, δ+, cδ+ (so, independent of n) and such that

bn → b in [L2
loc]

d, div bn → div b in L1
loc.
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Once again, we can take e.g. bn := Eεnb, see [K6, Sect. 6] for the proof.

We denote by Hξ (ξ > 0) the set of bounded symmetric uniformly elliptic Borel measurable
matrix fields a : Rd → Rd×d:

a = a⊤, ξI ≤ a(x) ≤ ξ−1I for a.e.x ∈ Rd,

for I the d× d identity matrix.

Definition 3.5. Given a matrix field a ∈ Hξ and a vector field b such that ∇a + b ∈ Fδ, we
denote by [a, b] the set of sequences {an} ∈ Hξ ∩ [Cb ∩ C∞]d×d, {bn} ∈ [Cb ∩ C∞]d such that

∇an + bn ∈ Fδ with cδ independent of n,

and
∇an + bn → ∇a+ b in [L2

loc]
d, an → a a.e. on Rd

as n→∞.

For example, we can take an = Eεna, see [KS3, Sect. 4.4] for the proof.

Definition 3.6. Given q = ∇Q ∈ BMO−1, where Q is the corresponding anti-symmetric matrix
field with entries in BMO (so, div q = 0), we denote by [q] the set of sequences

{qm = ∇Qm for anti-symmetric Qm ∈ [C∞ ∩W 1,∞]d×d}
such that {

∥Qm∥BMO ≤ C∥Q∥BMO for a constant C independent of m,
Qm → Q in [Lsloc]

d×d for any 1 ≤ s <∞.

For example, one possible choice is

Qm := Eεm(Q ∧ Uεm ∨ Vεm),

where the maximum and the minimum are taken componentwise,

Uε := (−c log |x|+ ε−1) ∧ ε−1 ∨ 0, Vε := (c log |x| − ε−1) ∧ 0 ∨ (−ε−1), εm ↓ 0
with c chosen so that ∥c log |x|∥BMO ≤ ∥Q∥BMO. The last two functions are compactly supported
and are in BMO. Since BMO is a lattice, the components of the matrix fields Qm (still anti-
symmetric) are in BMO. This regularization of Q was employed earlier in [QX].

4. Preliminary discussion: blow up thresholds for Brownian particles

We continue discussing the particle system in Example 1.1, i.e.

Xi
t = xi0 −

√
κ
d− 2

2

1

N

N∑
j=1,j ̸=i

ˆ t

0

Xi
s −Xj

s

|Xi
s −X

j
s |2

ds+

ˆ t

0

q0(X
i
s)ds+

√
2Bit, i = 1, . . . , N, (4.1)

where q0 ∈ BMO−1(Rd), d ≥ 3.

1. First, we present positive well-posedness results for (4.1) that follow from Theorems 5.1 and
8.1.

2. Next, we exhibit counterexamples to well-posedness of particle system (4.1) when the attrac-
tion strength κ is too large. On one hand, these counterexamples test the sharpness of Theorems
5.1 and 8.1; on the other, they play a crucial role in the proof of Theorem 8.2, which provides an
improved upper bound on the constant in the many-particle Hardy inequality.
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3. Finally, we discuss the two- and the one-dimensional cases.

4.1. Positive results. Theorem 8.1 covers a large portion of the admissible range for the attrac-
tion parameter κ in (4.1):

κ ∈
[
0, 16

(
1 ∨ N

1 +
√
1 + 3(d−2)2

(d−1)2 (N − 1)(N − 2)

)2[
. (4.2)

Here, the right endpoint arises from Hoffmann-Ostenhof, Hoffmann-Ostenhof, Laptev and Tid-
blom’s lower bound on the constant in the many-particle Hardy inequality [HHLT]. Since the
optimal constant in that inequality is not yet known, one expects the true admissible interval for
κ to be strictly larger. Note that in dimensions d ≥ 7 the interval (4.2) reduces to κ ∈ [0, 16[.

By contrast, Theorem 5.1 handles only κ ∈ [0, 4 N2

(N−1)2 [, but it offers greater flexibility in
modifying the interaction kernel in (4.1). For example, one can multiply the attracting interaction
kernel by any function of L∞ norm at most one, without altering the assumption on κ. In
particular, one can “cut holes” in the interaction kernel so that the particles do not interact along
certain directions (cf. Examples 3.1.4).

One can also describe how the particles behave as they approach collision. Let p(t, x, y) be the
transition density (heat kernel) of (4.1). For simplicity, set q0 = 0. Then one obtains two-sided
heat kernel bounds in RNd

c1t
−Nd

2 e−
|x−y|2

c2t φt(y) ≤ p(t, x, y) ≤ c3t−
Nd
2 e−

|x−y|2
c4t φt(y), (4.3)

where φt ≥ 1 is the singular weight

φt(y) :=
∏

1≤i<j≤N

η(t−
1
2 |yi − yj |)

for a fixed function 1 ≤ η ∈ C2(]0,∞[) such that

η(r) =

{
r−

√
κ d−2

2
1
N 0 < r < 1,

2, r > 2.

The details will appear in [BK]. A weaker version of the upper bound in (4.3) omitting the
exponential factor was proved in [K6].

4.2. Counterexamples. These were the positive results for (4.1) that we now balance with
counterexamples, i.e. analogues of (a), (b) in Section 1.1.1. For simplicity, assume there is no
divergence-free distributional component of the drift (i.e. q0 = 0). The right endpoint of the
interval (4.2) lies just below the first blow up threshold for (4.1), or the “non-sticky collisions
threshold”. More precisely, following [F], set

Rt :=
1

4N

N∑
i,j=1

|Xi
t −X

j
t |2.

It is not difficult to see that Rt is a local squared Bessel process, i.e.

Rt = R0 + 2

ˆ t

0

√
|Rt|dWt + µt, (4.4)

where Wt is a one-dimensional Brownian motion, and

µ = (N − 1)

(
d−
√
κ
d− 2

4

)
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is its “dimension”; the value of µ controls how often Rt hits zero. In what follows, by a collision
of particles in (4.1) we mean a collision of all N particles at the same time, i.e. when Rt = 0. So,
by standard theory of Bessel processes (see [RY, Ch. XI, §1]):

(a’) If κ ≥ 16( d
d−2)

2, then there are a.s. sticky collisions in (4.1), i.e. the particles collide in
finite time and stay clumped up. Furthermore, one can show that for κ > 16( d

d−2)
2 the particle

system ceases to have a weak solution, cf. (a) in Section 1.1.1.
(b’) If 16

(
d
d−2

)2(
1− 2

d(N−1)

)
< κ < 16( d

d−2)
2, then there are a.s. non-sticky collisions in (4.1),

i.e. particles collide infinitely many times, but
´∞
0
Rtdt <∞ a.s.

Comparing (a’), (b’) with the admissible range (4.2) in Theorem 8.1, we see that the latter
provides a result that is close to optimal.

4.3. Two- and one-dimensional cases. For the two-dimensional counterpart of (4.1), namely,
the finite-particle approximation of the Keller-Segel model,

Xi
t = xi −

√
κ
ˆ t

0

Xi
s −Xj

s

|Xi
s −X

j
s |2

ds+
√
2Bit, x = (x1, . . . , xN ) ∈ R2N ,

the attracting interaction kernel is no longer locally square intergrable and therefore is not form-
bounded, so one cannot apply our Theorems 5.1, 8.1 (see, however, Section 7 where we address
d = 2, but only to some extent). Cattiaux-Pédèches [CP] and Fournier-Jourdain [FJ], Fournier-
Tardy [FT] exploited the special structure of the drift and constructed process (X1

t , . . . , X
N
t ).

They work either via a suitable Dirichlet form or by exhibiting a weak solution to the SDE,
respectively. In particular, they cover the full critical range κ ∈ [0, 16[, where 16 is the sticky
collisons threshold in dimension two. In this context, note:

1) The arguments of [FJ, FT] work in dimensions d ≥ 3 as well, and allow to handle 16 ≤ κ <
16( d

d−2)
2 in (4.1), which includes non-sticky collisions, see (b’) above.

2) Ohashi-Russo-Texeira [ORT] consider squared Bessel processes in the low-dimensional regime
0 < ν < 1 (i.e. non-sticky collisions). They characterize the process as the unique solution of SDE

dXt =
1− ν
2

dt

Xt
+ dBt, X0 = x0 > 0, 0 < ν < 1,

whose drift b(x) = 1
x is not locally in L1

loc, and thus has to be considered as a distributional drift.
It is not yet clear whether Theorems 5.1, 8.1 can be extended in some form to the non-sticky

collisions part of the interval of admissible values of κ. However, taking into account the positive
results in 1) and in 2), such extension is conceivable.

We refer to Cattiaux [C] and Fournier [F] for recent surveys on the Keller-Segel model and its
finite particle approximations.

5. General distributional drifts

First, we consider SDE

Xt = x−
ˆ t

0

(
b(Xs) + q(Xs)

)
ds+

√
2Bt, x ∈ Rd, t ≥ 0. (5.1)

with
b ∈ Fδ, q ∈ BMO−1 (⇒ div q = 0),
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with the form-bound δ of b going all the way up to (but staying strictly less) the critical threshold
δ = 4. As mentioned in the introduction, by a result of Mazya and Verbitsky, this assumption on
b and q is equivalent to having generalized form-boundedness (1.6) of c = b+ q.

We fix bounded smooth approximations {bn} ∈ [b], {qm} ∈ [q] (as in Section 2). Consider the
approximating SDEs

Xn,m
t = x−

ˆ t

0

(
bn(X

n,m
s ) + qm(Xn,m

s )
)
ds+

√
2Bt, (5.2)

on a complete probability space F = (Ω,F , {Ft}t≥0,P), with Bt being a Ft-Brownian motion. By
classical theory, for every x ∈ Rd and every n = 1, 2, . . . , there exists a pathwise unique strong
solution {Xn,m

t }t≥0 to (5.2). The corresponding Kolmogorov operators

Λ(bn, qm) := −∆+ (bn + qm) · ∇, D
(
Λ(bn, qm)

)
= (1−∆)−1C∞.

generate strongly continuous Feller semigroups on C∞ such that

e−tΛ(bn,qm)f(x) = E[f(Xn,m
t )].

Set Pn,mx := P(Xn,m
t )−1.

Theorem 5.1. Let d ≥ 3. Assume that b and q are, respectively, Borel measurable and distribution-
valued vector fields Rd → Rd that satisfy{

b ∈ Fδ with δ < 4,

q ∈ BMO−1.
(5.3)

Let {bn} ∈ [b], {qm} ∈ [q] as in Definitions 3.3 and 3.6. The following statements are true:
(i) (Feller semigroup) The limit

s-C∞- lim
n

lim
m
e−tΛ(bn,qm) (loc. uniformly in t ≥ 0)

exists and determines a strongly continuous Feller semigroup, say, e−tΛ = e−tΛ(b,q). (The
order in which we take the limits is important.) The generator Λ of e−tΛ is an operator
realization of the formal differential expression −∆+ (b+ q) · ∇ in C∞.

(ii) (Approximation uniqueness) The limit in (i) does not depend on the choice of {bn} ∈ [b]
and {qm} ∈ [q].

(iii) (Relaxed approximation uniqueness) Let δ < 1. If {bn} ∈ [b] ∩ [L2]d does not necessarily
converge strongly in [L2]d, but only weakly:

bn
w→ b in [L2]d,

then we still have convergence of the approximating Feller semigroups to the same limit
from (i):

e−tΛ(bn,q) s→ e−tΛ(b,q) in C∞ (loc. uniformly in t ≥ 0).
(Thus, when δ < 1, we can extend quite substantially the class of admissible approxima-
tions of b.)

(iv) (Generalized martingale solution) There exists a strong Markov family of probability mea-
sures {Px}x∈Rd on the canonical space C of continuous trajectories such that

e−tΛ(b,q)f(x) = EPx
[f(ωt)], f ∈ C∞, x ∈ Rd, t ≥ 0,

Px = w-P(C)- lim
n

lim
m

Pn,mx ,
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and for every test function v in the domain D
(
Λ(b, q)

)
, a dense subspace of C∞, the

process

t 7→ v(ωt)− x+

ˆ t

0

Λ(b, q)v(ωs)ds

is a continuous martingale under Px.

(Selecting test functions v from the domain of the Feller generator allows to address
the problem of defining the term

´ t
0
q(Xs) · ∇v(Xs)ds in the martingale problem.)

(v) (Weak solution for the SDE with disperse initial data) Let δ < 1 and let us also assume that
b, q, bn, qm have supports in a ball of fixed radius. Given an initial (smooth) probability
density ν0 satisfying ⟨ν2r0 ⟩ < ∞ for some 1 < r < 1√

δ
, there exist a probability space

F′ = (Ω′,F ′, {F ′
t}t≥0,P

′) and a continuous process Xt on this space such that the limit

At := L2(Ω′)- lim
n

lim
m

ˆ t

0

(
bn(Xs) + qm(Xs)

)
ds

exists, and we have a.s.

Xt = X0 −At +
√
2Bt, t > 0,

for a F ′
t-Brownian motion Bt, for P′X−1

0 having density ν0. (The compact support as-
sumption can be removed with a few additional efforts at expense of requiring ⟨ν2r0 ρ−α⟩ <
∞, where the weight ρ is defined by (2.1), for appropriate α > 0, see Remark 10.4.)

(vi) (Dispersion estimates and uniqueness of weak solution to Kolmogorov PDE) We can
descend from C∞ to Lp and show that for every p > 2

2−
√
δ

the operators

e−tΛp(b,q) :=

[
e−tΛ(b,q) ↾ C∞ ∩ Lp

]clos
Lp→Lp

are bounded on Lp and constitute a strongly continuous semigroup. Moreover, for all
2

2−
√
δ
< p ≤ r <∞,

∥e−tΛp(b,q)f∥r ≤ Cδ,deωptt−
d
2 (

1
p−

1
r )∥f∥p, f ∈ Lp, ωp =

cδ
2(p− 1)

.

The latter and the Dunford-Pettis theorem yields that e−tΛ(b,q), t ≥ 0, are integral opera-
tors.

If δ < 1, then v(t) := e−tΛ2(b,q)f , f ∈ L2, is the unique weak solution to Cauchy
problem

(∂t −∆+ (b+ q) · ∇)v = 0, v|t=0 = f,

in the standard Hilbert triple W 1,2 ↪→ L2 ↪→W−1,2.

(vii) (Strong Feller property of the resolvents) For every f ∈ Lpθ ∩ Lpθ′ , for every x ∈ Rd,
u := (µ+ Λ(b, q))−1f satisfies

sup
B 1

2
(x)

|u| ≤ K
(
(µ− µ0)

− 1
pθ ⟨|f |pθρx⟩

1
pθ + (µ− µ0)

−β
p ⟨|f |pθ

′
ρx⟩

1
pθ′

)
, µ > µ0 > 0,

for fixed 1 < θ < d
d−2 and p ≥ 2 such that p > 2

2−
√
δ
. The constants K and µ0 do not

depend on f or x.

Additionally, Krylov-type bound (5.15) holds, see Remark 5.3.



SDES WITH SINGULAR DRIFT 23

In Theorem 5.1, we do not establish conditional weak uniqueness or strong solvability as in
the next theorem. Nevertheless, Theorem 5.1 still covers a common scenario in physical models:
one mollifies a singular drift and studies the corresponding SDE as an approximation of the true
dynamics (for instance, when investigating long-term behavior such as sub- or super-diffusivity,
see [ABK]). Although the mollified drift is smooth, one must ensure that:

– the resulting stochastic dynamics does not depend on the choice of the regularization of the
drift (in particular, on the choice of the mollifier);

– in the limit one still gets a non-pathological diffusion process.
Assertions (ii), (iii) of Theorem 5.1 address the first point, and assertions (i), (iv)-(vii) the

second.

In the next theorem q = 0, i.e. there is no distributional component of the drift. This theorem
recollects results obtained previously by the first author and co-authors, and is included in this
paper for the sake of completeness:

Theorem 5.2 (Case q = 0). Let d ≥ 3. Assume that b ∈ Fδ with δ < 4. Let {bn} ∈ [b]. Then, in
addition to the assertions of Theorem 5.1, the following are true:

(i) (Classical weak solution [KS2]) For every x ∈ Rd,

EPx

ˆ 1

0

|b(ωs)|ds <∞

and, for every test function v ∈ C2
c , the process

t 7→ v(ωt)− x+

ˆ t

0

(−∆+ b · ∇)v(ωs)ds

is a continuous martingale with respect to Px. Thus, in the terminology used e.g. in [RY],
C2
c belongs to the domain of the extended generator of the Feller semigroup e−tΛ(b). More-

over,

Bt(ω) :=
1√
2

(
ωt − x+

ˆ t

0

b(ωs)ds

)
, t ≥ 0,

is a Brownian motion, so we have a weak solution to SDE (5.1).

If, additionally, δ < C
d2 , then even more can be said:

(ii) (Strong solvability [KM1]) Assume that b and {bn} ∈ [b] have supports in a fixed ball and
let cδ = 0. Then the strong solutions Xn

t of the approximating SDE

Xn
t = x−

ˆ t

0

bn(X
n
s )ds+

√
2Bt,

considered on a fixed probability space F = (Ω,F , {Ft}t≥0,P), converge P-a.s. to a strong
solution Xt to

Xt = x−
ˆ t

0

b(Xs)ds+
√
2Bt. (5.4)

(The compact support assumption and the assumption cδ = 0 are of technical character
and can be removed [KM4].) The proof is based on the Röckner-Zhao method [RZ2].
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(iii) (Krylov bound [K5]) There exists constant C = C(T, d, δ, cδ1 , ε) (ε > 0) such that

E

[ˆ T

0

|h(s,Xs)|ds
]
≤ C∥h∥

L
d
2
+ε([0,T ]×Rd)

(5.5)

for all h ∈ Cc(Rd+1).

(iv) (Krylov-type bound [KM2]) Let r ∈]d, δ− 1
2 [. Let V ∈ Fδ1 be a form-bounded potential,

that is, V ∈ L2
loc and

⟨V 2, φ2⟩ ≤ δ1⟨|∇φ|2⟩+ cδ1⟨φ2⟩, φ ∈ C∞
c , (5.6)

for some δ1 < ∞ and cδ1 < ∞. Then there exists constant C = C(T, d, r, δ, cδ, δ1, cδ1)
such that

E

ˆ T

0

|V (Xs)h(s,Xs)|ds ≤ C∥V |h|
r
2 ∥

2
r

L2([0,T ]×Rd)
(5.7)

for all h ∈ Cc(Rd+1).

(v) (Conditional strong uniqueness [KM1]) The strong solution Xt to (5.4) constructed in (ii)
is unique among strong solutions that satisfy Krylov-type bound (5.7) for some r ∈]d, δ− 1

2 [
both for V = 1 and V = |b|.

If a form-bounded drift b additionally satisfies

|b| ∈ L d
2+ε for some ε > 0,

then Xt is unique among strong solutions to (5.4) that satisfy Krylov bound (5.5).

(vi) (Krylov bounds and conditional weak uniqueness [KM2, K5]) Krylov bounds (5.5), (5.7)
and the conditional uniqueness results in (v) hold for the weak solutions in (i).

(vii) (Another kind of approximation uniqueness [KS7]) Let δ < 4
(d−2)2 ∧ 1. Let {Qx}x∈Rd be

a family of solutions to the martingale problem in (vii) that are constructed via approxi-
mation, i.e. are such that

Qx = w-P(C)- lim
n

Px(b̃n) for every x ∈ Rd,

where b̃n ∈ Fδ ∩ [Cb ∩ C∞]d with cδ independent of n. Then

{Qx}x∈Rd = {Px}x∈Rd ,

where {Px}x∈Rd were constructed in (i). Here we do not require any convergence of b̃n to
b.

(viii) (Gradient bounds [KoS, KS7, K7, KS8]) Let δ < 4
(d−2)2 ∧1. Then the unique weak solution

u to the elliptic equation
(µ−∆+ b · ∇)u = f

satisfies, for every r ∈ [2, 2√
δ
[,

∥∇u∥r ≤ K1(µ− µ0)
− 1

2 ∥f∥r, ∥∇|∇u| r2 ∥2 ≤ K2(µ− µ0)
− 1

2+
1
r ∥f∥r, (5.8)

∥(µ−∆)
1
2+

1
su∥r ≤ K∥(µ−∆)−

1
2+

1
ℓ f∥r, for all 2 ≤ ℓ < r < s (5.9)

for all µ greater than some generic constant µ0.
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The corresponding parabolic gradient bounds impose more restrictive conditions on δ.
Namely, assume that form-bound δ satisfies, for some r = d+ ε (with this choice of r the
Sobolev embedding theorem will give Hölder continuity of solution)

√
δ <

{ (√
r − 1− r−2

2

)
2
r in dimensions d = 3, 4,

(1− µ) r−1
r−2

1
r in dimensions d ≥ 5,

where 0 < µ < 1, 16µ > (1−µ)4 (r−1)2

(r−2)4 . (For instance, these assumptions on δ are satisfied
if δ < 1

d2 , d ≥ 3.) Then the unique weak solution v to Cauchy problem

(∂t −∆+ b · ∇)v = 0, v|t=0 = f,

satisfies

sup
0≤s≤t

∥∇v(s)∥rr + C1

ˆ t

0

∥|∇v|
r−2
2 ∂sv∥22ds+ C2

ˆ t

0

⟨|∇|∇v| r2 |2⟩ds ≤ eC3t∥∇f∥rr (5.10)

for constants Ci > 0 (i = 1, 2, 3) that depend only on d, δ and cδ.

(ix) (Stochastic transport equation [KSS]) If b ∈ Fδ with δ < (1 + 4rd)−2, r = 1, 2, . . . Then,
for every v0 ∈ W 1,4r, there exists a unique weak solution to Cauchy problem for the
stochastic transport equation

dv + b · ∇vdt+
√
2∇v ◦ dBt = 0, v|t=0 = f, (5.11)

with ◦ denoting the Stratonovich multiplication. It satisfies

sup
0≤α≤1

∥∥E|∇v|2r∥∥
L

2
1−α ([0,t],L

2d
d−2+2α )

≤ C1e
C2t∥∇f∥2r4r.

In particular, if 2r > d, then by the Sobolev embedding theorem for a.e. ω ∈ Ω the function
x 7→ v(t, x, ω) is Hölder continuous, possibly after modification on a set of measure zero
in Rd (in general, depending on ω).

Example 5.1. Let us return to the problem of describing the dynamics Xt = (X1
t , . . . , X

N
t ) of

N interacting particles immersed in a velocity field in BMO−1, d ≥ 3. That is, we are in the
setting of Example 1.1, where, recall,

Xt = x0 −
ˆ t

0

(
b(Xs) + q(Xs)

)
ds+

√
2Bt, x0 = (x10, . . . , x

N
0 ) ∈ RNd, Bt = (B1

t , . . . , B
N
t ),

(5.12)
and b(x) = (b1(x), . . . , bN (x)), q(x) = (q0(x

1), . . . , q0(x
N )) (x = (x1, . . . , xN ) ∈ RNd),

bi(x1, . . . , xN ) :=
1

N

N∑
j=1,j ̸=i

√
κ
d− 2

2

xi − xj

|xi − xj |2
, q0 ∈ BMO−1(Rd).

Then, by Lemma 3.1, b ∈ Fδ(RNd) with δ = (N−1)2

N2 κ. Also, as mentioned in the introduction,
q ∈ BMO−1(RNd). Therefore, if the strength of attraction between the particles κ satisfies

κ < 4
N2

(N − 1)2
(κhyp)

(so that δ < 4), then Theorem 5.1 applies and ensures the existence and the approximation
uniqueness for this particle system. Importantly, the assumption on κ basically does not depend
on the number of particles N (assumed to be large).
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In the case d = 2, which is of interest e.g. in the Keller-Segel model, the drift b : R2N → R2N

defined above is not form-bounded. However, it is weakly form-bounded, which still allows us to
say something about the corresponding SDE (5.12), see Section 7.

Remark 5.1 (Critical threshold δ = 4). Let b ∈ F4. This case is not covered by Theorem 5.1.
Assume additionally that b and the approximating vector fields {bn} ∈ [b] have supports in a fixed
ball (or, more generally, decay sufficiently rapidly at infinity uniformly in n). Let q ∈ BMO−1. By
following closely the proof of [K3, Theorem 1] (see also [KS6, Theorem 2]) i.e. using test function
ev − e−v in the analysis of Cauchy problem for the Kolmogorov PDE (∂t −∆+ b · ∇)v = 0, one
can show that the limit

s-Lcosh−1- lim
n

lim
m
e−tΛ(bn,qm) (loc. uniformly in t ≥ 0)

exists and determines a strongly continuous Markov semigroup e−tΛ(b) on the Orlicz space

Lcosh−1 := the closure of the Schwartz space S with respect to norm

∥f∥cosh−1 = inf

{
c > 0 | ⟨cosh f

c
− 1⟩ ≤ 1

}
.

On the torus, in the case q = 0 (i.e. no distributional component of the drift), [K3] established
the following energy inequality for v(t) = e−tΛ(bn)v0:

1

2
sup
s∈[0,t]

⟨ev
p(s)⟩+ 4

(p− 1)

p

ˆ t

0

⟨(∇v
p
2 )2ev

p

⟩ds ≤ ⟨ev
p
0 ⟩, p = 2, 4, . . . ,

provided cδ√
δ
t < 1

2 . The small time restriction can be removed using the semigroup property. One
can compare this to the usual Lp energy inequality when δ < 4 (Remark 9.2). At first sight,
letting δ ↑ 4 seems to eliminate the dispersion term; however, it turns out that one retains an
energy inequality once appropriate exponential factors are included.

One also obtains uniqueness of weak solution to Cauchy problem for Kolmogorov PDE at least
for sufficiently regular initial functions [K3].

In some sense, Orlicz space Lcosh−1 can be viewed as the limit of Lp spaces, i.e. as p > 2
2−

√
δ

tends to ∞ as δ ↑ 4. See the end of Remark 9.2 for further discussion.

Remark 5.2 (On strong solutions and stochastic transport equation). 1. Assertion (ii) on strong
solvability was proved in [KM1] using the method of Röckner-Zhao [RZ2]. Their condition reads,
for time-homogeneous drifts, as |b| ∈ Ld + L∞. For these drifts, the form-bound δ can be chosen
arbitrarily small, so multiplying such drift by an arbitrarily large constant still leaves it admissible.
This is a natural property for the applications to Navier-Stokes equations, i.e. the focus of Röckner
and Zhao in [RZ2]. Their approach is based on the compactness criterion on the Wiener-Sobolev
space. [KM1] extended (in fact, simplified) their argument to include form-bounded drifts. Also,
following [RZ2], the proof of the conditional strong uniqueness in [KM1] combines Cherny’s the-
orem [Ch] (which is, in a sense, the dual to the Yamada-Watanabe principle) and the conditional
weak uniqueness from [KM2, K5], cf. Theorem 5.2(v) and (vi).

Let us also mention a very recent result of Krylov [Kr4] where he proved, using his method
based on the Itô-Duhamel series (that can also be viewed as the Duhamel series for the stochastic
transport equation) and his earlier results with Veretennikov, strong solvability for drifts in the
Morrey class M2+ε and diffusion coefficients with derivatives in M2+ε. His result thus extends a
significant portion of [KM1] to some discontinuous diffusion coefficients. We discuss conditions of
this type in the upcoming Section 6. Earlier, Krylov [Kr2] obtained strong well-posedness of the
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SDE assuming additionally that the drift belongs to M(2∨ d
2 )+ε

, which is a subclass of M2+ε that,
in higher dimensions, excludes some interesting drifts having singularities along hypersurfaces.

2. There is a well known link between the stochastic transport equation (5.11) and the SDE

Xt = x−
ˆ t

0

b(Xr)dr +
√
2Bt. (5.13)

Namely, when b is bounded and smooth, the solution v to the STE (5.11) can be represented as

v(t) = f(Ψ−1
t ), t ⩾ 0, (5.14)

where Ψt : Rd × Ω → Rd is the stochastic flow for the SDE (5.13) i.e. there exists Ω0 ⊂ Ω,
P(Ω0) = 1, such that, for all ω ∈ Ω0, Ψt(·, ω)Ψs(·, ω) = Ψt+s(·, ω), Ψ0(x, ω) = x, and

1) for every x ∈ Rd, the process t 7→ Ψt(x, ω) is a strong solution to (5.13),
2) Ψt(x, ω) is continuous in (t, x), Ψt(·, ω) : Rd → Rd are homeomorphisms and Ψt(·, ω),

Ψ−1
t (·, ω) ∈ C∞(Rd,Rd).
Beck-Flandoli-Gubinelli-Maurelli [BFGM] reversed this connection when b is singular (for time-

homogeneous drifts their condition reads as |b| ∈ Ld + L∞). They used the stochastic transport
equation (5.11) to construct, for a.e. initial point x ∈ Rd, a strong solution to SDE (5.13). Hence,
having Theorem 5.2(ix ), one can extend the argument of [BFGM] to b ∈ Fδ, see [KSS, Remark
1]. However, since this approach excludes a measure zero set of initial points, it does not imply
Theorem 5.2(ii).

Remark 5.3 (Krylov-type bound in the distributional case). Consider the assumptions of The-
orem 5.1. Then the following a priori Krylov-type bound holds. Let V ∈ Fδ1 , δ1 < ∞, be a
form-bounded potential (cf. (5.6)). Let W = divw for some vector field w whose components lie
in BMO. Fix some smooth approximations {Vn} ∈ [V ], {Wm} ∈ [W ], defined just in Section 2.
Fix 1 < θ < d

d−2 and p ≥ 2 such that p > 2
2−

√
δ
. Then, for all f ∈ S,

sup
x∈Rd

∣∣∣∣EPx

ˆ 1

0

(Vn +Wm)(ωs)f(ωs)ds

∣∣∣∣ ≤ K∥Am∥pθ ∨ ∥Am∥pθ′ , (5.15)

where
Am = |wim||∇f |+ (1 + |wim|)|f |,

and constantK does not depend on n, m or f . Informally, this bound shows that a solution of SDE
(5.1) cannot spend too much time near the singularities of V and W . The proof is essentially given
in Proposition 10.1. (The latter is an elliptic estimate, so one needs to use identity 1 = eµse−µs

to arrive at (5.15).) There we take as V and W the components of vector fields b and q, but
the proof extends to V and W right away since it does not exploit any interaction between the
coefficients in the right-hand side and the drift term.

By running parabolic De Giorgi’s iterations, one refines (5.15) to∣∣∣∣EPn,m
x

ˆ ε

0

(Vn +Wm)(ωs)f(ωs)ds

∣∣∣∣ ≤ H(ε), (5.16)

where H(ε) ↓ 0 (ε ↓ 0) is independent of n, m and f (and x ∈ Rd). If we could place the absolute
value under the integral, then, after taking V = bi and W = qi, a standard argument would allow
to conclude tightness of {Pnx}. However, since W is a distribution, we cannot do this. Still, a
finer argument of Hao-Zhang [HZ] shows that one can conclude tightness of {Pnx} from, basically,
(5.16), by applying Itô’s formula to

√
σ + |x− x0|2 with σ > 0 small, which allows to control the

smallness of the incremenents of solutions of the approximating SDEs after taking σ ↓ 0. That



28 D.KINZEBULATOV AND R.VAFADAR

said, [HZ] need a tightness argument since they are dealing with divergence-free super-critical
drifts, while we are dealing with general critical drifts and obtain stronger convergence results for
{Pnx} provided by the theory of Feller semigroups.

6. Diffusion coefficients with form-bounded ∇a

By [MV, Theorem 6.1], for a distributional vector field c on Rd, one has

−∆+ c · ∇ ∈ B(W 1,2,W−1,2), (6.1)

if and only if c admits a decomposition

c = b+ q for some b ∈ Fδ and q ∈ BMO−1
♯ . (6.2)

Here BMO−1
♯ consists of divergence-free vector fields q = ∇Q whose n× n anti-symmetric prim-

itive Q = (Qij)di,j=1 satisfies

∥Qij∥BMO♯
= sup
x∈Rd,0<R≤1

1

|BR|

ˆ
BR(x)

|Qij − (Qij)BR(x)|dy <∞.

It follows that Theorem 5.1 covers exactly the same class of drifts that guarantee the embedding
(6.1), up to replacing BMO−1

♯ with BMO−1, i.e. imposing rather mild assumptions on the growth
of Q at infinity. In fact, [MV, Theorem 1] yields a similar necessary and sufficient condition for
the embedding (6.1) for the homogeneous Sobolev spaces, in which case BMO−1

♯ in (6.2) gets
replaced with BMO−1, and one has cδ = 0 in the form-boundedness condition for b.

As noted above, in light of the result of Mazya and Verbitsky [MV, Theorem 6.1], the drift
conditions in Theorem 5.1 are essentially optimal if one expects the Kolmogorov operator−∆+c·∇
to be W 1,2 → W−1,2 bounded. In Theorem 7.1, however, we will be dealing with a larger than
Fδ class of Borel measurable drifts such that the Kolmogorov operator is W 3

2 ,2 →W− 1
2 ,2 (Bessel

spaces) bounded. This apparent ambiguity and the question why one might expect Kolmogorov
operator to be W 1,2 → W−1,2 bounded is clarified by noting that both Theorem 5.1 and [MV,
Theorem 6.1] are valid in a greater generality. Let a be a bounded uniformly elliptic symmetric
matrix field on Rd, i.e. a ∈ Hξ for some ξ > 0. The cited result of Mazya and Verbitsky states
that one has

−∇ · a · ∇+ c · ∇ ∈ B(W 1,2,W−1,2) ⇔ c = b+ q as in (6.2), (6.3)

where −∇ · a · ∇ does not let us deviate from the embedding W 1,2 →W−1,2. In Theorem 6.1, we
treat non-divergence form operators

−a · ∇2 + c · ∇,
where ∇a ∈ [L2

loc]
d×d is in Fδ. Since

−a · ∇2 + c · ∇ = −∇ · a · ∇+ (∇a+ c) · ∇,

[MV, Theorem 6.1] again applies. For such diffusion coefficients, which are considered in the next
theorem, our condition on the drift is, arguably, optimal.

For our a ∈ Hξ, define the row divergence operator a 7→ ∇a via

(∇a)j :=
d∑
i=1

∇iaij , 1 ≤ j ≤ d.
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Put σ =
√
a. In Theorem 6.1 below we consider SDE

Xt = x−
ˆ t

0

(
b(Xs) + q(Xs)

)
ds+

√
2

ˆ t

0

σ(Xs)dBs, (6.4)

with ∇a+ b ∈ Fδ and q ∈ BMO−1.

Example 6.1. For example, let

a(x) = I + c
x⊗ x
|x|2

, x ∈ Rd, c > −1.

Then ∇a(x) = c(d− 1) x
|x|2 , so, in view of Example 3.2,

∇a ∈ Fδ1 , δ1 =
4c2(d− 1)2

(d− 2)2
.

This matrix field produces diffusion coefficients σ with discontinuity at the origin that is strong
enough to make the weak solution to SDE (6.4) (with b = q = 0) arrive at the origin with positive
probability, see e.g. [B, Ch. V, Sect. 3]. This example can be extended to a matrix field a in RNd
similar to the many-particle drift (1.5), i.e. corresponding to N particles in Rd interacting via
diffusion coefficients.

Let {an}, {bn} ∈ [a, b] (Section 2), {qm} ∈ [q] and σn =
√
an. Define the approximating

Kolmogorov operators

Λ(an, bn, qm) := −an · ∇2 + (bn + qm) · ∇, D
(
Λ(an, bn, qm)

)
= (1−∆)−1C∞.

By classical theory, these are generators of strongly continuous Feller semigroups on C∞. One
has

e−tΛ(an,bn,qm)f(x) = E[f(Xn,m
t )],

where Xn,m
t is the unique strong solution to SDE

Xn,m
t = x−

ˆ t

0

(
bn(X

n,m
s ) + qm(Xn,m

s )
)
ds+

√
2

ˆ t

0

σn(X
n,m
s )dBs, (6.5)

considered on a fixed complete probability space F = (Ω,F , {Ft}t≥0,P), Bt is a d-dimensional
Brownian motion on this space. Set Pn,mx := P(Xn,m

t )−1.

Theorem 6.1. Let d ≥ 3. Let a ∈ Hξ and let b and q be, respectively, Borel measurable and
distribution-valued vector fields Rd → Rd that satisfy{

∇a+ b ∈ Fδ with δ < ξ2,

q ∈ BMO−1.

Let {an}, {bn} ∈ [a, b], {qm} ∈ [q]. The following are true:
(i) (Feller semigroup) The limit

s-C∞- lim
n

lim
m
e−tΛ(an,bn,qm) (loc. uniformly in t ≥ 0)

exists and determines a strongly continuous Feller semigroup on C∞, say, e−tΛ = e−tΛ(a,b,q),
where thus Λ ⊃ −a · ∇2 + (b+ q) · ∇ in C∞.

(ii) (Approximation uniqueness) The limit in (i) does not depend on the choice of {an}, {bn}
and {qm}.
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(iii) (Relaxed approximation uniqueness) In fact, we can replace the strong convergence of bn
to b in [L2]d by the weak convergence

bn
w→ b in [L2]d

to have convergence of the Feller semigroups e−tΛ(an,bn,q) s→ e−tΛ(a,b,q) in C∞ (loc. uniformly
in t ≥ 0).

(iv) (Generalized martingale solution) There exists a strong Markov family of probability mea-
sures {Px}x∈Rd on the canonical space C of continuous trajectories ω such that

e−tΛ(a,b,q)f(x) = EPx [f(ωt)], f ∈ C∞, x ∈ Rd, t ≥ 0,

Px = w-P(C)- lim
n

lim
m

Pn,mx ,

and for every v in the domain D
(
Λ(a, b, q)

)
⊂ C∞ of operator Λ(a, b, q) ⊃ −a · ∇2 + (b+

q) · ∇, a dense subspace of C∞, the process

t 7→ v(ωt)− x+

ˆ t

0

Λ(a, b, q)v(ωs)ds

is a continuous martingale with respect to Px.

(v) (Weak solution with disperse initial data) Assume additionally that b, q and bn, qm have
supports in a fixed ball of finite radius. Given an initial (smooth) probability density
ν0 satisfying ⟨ν2r0 ⟩ < ∞ for some 1 < r < δ−

1
2 , there exist a probability space F′ =

(Ω′,F ′, {F ′
t}t≥0,P

′) and a continuous process Xt on this space such that the limit

At := L2(Ω′)- lim
n

lim
m

ˆ t

0

(
bn(Xs) + qm(Xs)

)
ds

exists, we have a.s.

Xt = X0 −At +
√
2

ˆ t

0

σ(Xs)dBs, t > 0,

for a F ′
t-Brownian motion Bt, and P′X−1

0 has density ν0.

(vi) (Dispersion estimates and uniqueness of weak solution to Kolmogorov PDE) For every
p > 2

2−ξ−1
√
δ
, the operators

e−tΛp(a,b,q) :=

[
e−tΛ(a,b,q) ↾ C∞ ∩ Lp

]clos
Lp→Lp

are bounded on Lp, constitute a strongly continuous semigroup, and for all 2
2−ξ−1

√
δ
<

p ≤ r <∞,

∥e−tΛp(a,b,q)f∥r ≤ Cδ,deωptt−
d
2 (

1
p−

1
r )∥f∥p, f ∈ Lp,

and so, by the Dunford-Pettis theorem, e−tΛ(a,b,q), t ≥ 0, are integral operators.
Furthermore, v(t) := e−tΛ2(a,b,q)f , f ∈ L2, is the unique weak solution to Cauchy

problem
(∂t − a · ∇2 + (b+ q) · ∇)v = 0, v|t=0 = f,

in the standard Hilbert triple W 1,2 ↪→ L2 ↪→W−1,2.
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(vii) (Strong Feller property of the resolvents) For every f ∈ Lpθ∩Lpθ′∩C∞, for every x ∈ Rd,
solution u = (µ+Λ(a, b, q))−1f to the elliptic Kolmogorov equation (µ− a · ∇2 + (b+ q) ·
∇)u = f satisfies

sup
B 1

2
(x)

|u| ≤ K
(
(µ− µ0)

− 1
pθ ⟨|f |pθρx⟩

1
pθ + (µ− µ0)

−β
p ⟨|f |pθ

′
ρx⟩

1
pθ′

)
,

for fixed 1 < θ < d
d−2 and p > 2

2−ξ−1
√
δ
, for all µ strictly greater than certain µ0. The

constant K does not depend on f or x.

Also, a priori Krylov-type bound analogous to (5.15) holds.

Theorem 6.1, when applied to a = I (so ξ = 1), imposes a more restrictive condition on the
form-bound δ than Theorem 5.1, i.e. δ < 1 instead of δ < 4. In fact, in the assumptions of Theorem
6.1 but with δ < 4ξ2, after passing to some subsequence {nk} we still get Feller semigroup

e−tΛ(a,b,q) = s-C∞- lim
k

lim
m
e−tΛ(ank

,bnk
,qm) (loc. uniformly in t ≥ 0).

That is, Theorem 6.1, with the exception of the approximation uniqueness, remains valid. Also,
assuming that δ < ξ2 and q = 0, many assertions of Theorem 5.2 remain valid:

(viii) (Classical weak solution) The proof is discussed in details in [KS2].
(ix ) (Strong solvability) The method of Röckner-Zhao [RZ2] yields, after a few modifications

in the spirit of [KM1], strong existence for SDE with diffusion coefficients satisfying

∇aij ∈ Fνij , form-bounds νij < cd for some constant cd ↓ 0 as d ↑ ∞, (6.6)

the details will appear in [KM4]; this gives another proof of a recent result of Krylov in
[Kr4].

(x ), (xi) (Krylov bound) and (Krylov-type bound) The proof follows by combining the arguments
in [K2] and [KS7].

(xiv), (xv) (Another kind of approximation uniqueness and gradient bounds (5.8)) These were proved
in [KS7].

Earlier, Veretennikov [V] and Zhang [Z], Zhang-Zhao [ZZ2] established strong well-posedness
for diffusions coefficients having derivatives in Lp with p strictly larger than 2d or d, respec-
tively. These assumptions, however, make diffusion coefficients Hölder continuous, so they exclude
e.g. Example 6.1.

In the case q = 0, [KS7] proved weak existence, gradient bounds of type (5.8) and an analogue
of Theorem 5.2(vii) (“another kind of approximation uniqueness”) for SDE (6.4) under dimension-
dependent conditions on the form-bounds of b and ∇aij , i.e. (6.6). Theorem 6.1 shows that the
assumptions on both the diffusion coefficients and drift can be weakened and made dimension-
independent.

Similar to (6.6) conditions on diffusion coefficients on the scale of Morrey spaces are considered
by Krylov, see [Kr1, Kr2].

7. Weakly form-bounded drifts and Keller-Segel finite particles

In the previous two sections we tested out results for SDEs with form-bounded drifts against
the interacting particle system in Example 1.1. This, however, was limited to dimensions d ≥ 3.
In dimension d = 2, which is of interest e.g. in the study of the Keller-Segel model of chemotaxis,
the particle system in Example 1.1 is more difficult to handle since its drift (1.5) is not in L2

loc(R2)
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and, thus, is not form-bounded. We can address this issue, at least to some extent, by pursuing a
different approach to proving weak well-posedness of SDEs. It works for substantially larger class
of weakly form-bounded drifts.

Definition 7.1. A vector field b ∈ [L1
loc]

d is said to be weakly form-bounded if there exists
constant δ > 0 such that

⟨|b|φ,φ⟩ ≤ δ∥(λ−∆)
1
4φ∥22, ∀φ ∈ C∞

c ,

for some λ = λδ ≥ 0. This will be abbreviated as b ∈ F
1
2

δ .

Example 7.1. 1. Morrey class M1+ε is a large subclass of F
1
2

δ defined in elementary terms:

∥b∥M1+ε := sup
r>0,x∈Rd

r

(
1

|Br|

ˆ
Br(x)

|b|1+εdx
) 1

1+ε

<∞.

The inclusion follows by D.R. Adams’ theorem [A1, Theorem 7.3]. The value of δ will be propor-
tional to the Morrey norm, with a coefficient that depends on the constants in some fundamental
inequalities of Harmonic Analysis.

2. The class of form-bounded drifts Fδ2 considered in the previous section, i.e.

⟨|b|2φ,φ⟩ ≤ δ2∥(−∆)
1
2φ∥22 + cδ2∥φ∥22

(
= δ2∥(λ−∆)

1
2φ∥22, λ =

cδ2

δ2

)
,

is a proper subclass of F1/2

δ . This is seen easily by appyling Heinz’ inequality. Alternatively, one
can invoke the inclusion Fδ (with cδ = 0) ⊂M2, see Examples 3.1 in Section 1, and, next, apply
M2 ⊂M1+ε if ε < 1, and then use the previous example. That said, if one follows this path, one
to a large extent loses the control over the value of the form-bound δ, which is in our focus in this
paper.

3. It is instructive to compare how Fδ and F1/2

δ handle the weak Ld class. Namely, for |b| ∈ Ld,∞,
we verify, using [KPS, Prop. 2.5, 2.6, Cor. 2.9],

d ≥ 2, b ∈ F
1
2

δ with
√
δ = ∥|b| 12 (−∆)−

1
4 ∥2→2 ⩽ ∥(|b|∗) 1

2 (−∆)−
1
4 ∥2→2

⩽

(
∥b∥d,∞Ω

− 1
d

d

) 1
2

∥|x|− 1
2 (−∆)−

1
4 ∥2→2 =

(
∥b∥d,∞Ω

− 1
d

d

) 1
2

2−
1
2
Γ
(
d−1
4

)
Γ
(
d+1
4

) ,
where Ωd = π

d
2Γ(d2 + 1), and |b|∗ is the symmetric decreasing rearrangement of |b|. Similarly,

d ≥ 3, b ∈ Fδ1 with
√
δ1 = ∥|b|(−∆)−

1
2 ∥2→2

⩽ ∥b∥d,∞Ω
− 1

d

d ∥|x|
−1(−∆)−

1
2 ∥2→2

⩽ ∥b∥d,∞Ω
− 1

d

d 2−1Γ
(
d−2
4

)
Γ
(
d+2
4

) = ∥b∥d,∞Ω
− 1

d

d

2

d− 2
.

In particular, using [KPS, Cor. 2.9], we have

d ≥ 2, x|x|−2 ∈ F
1
2

δ ,
√
δ = 2−

1
2
Γ
(
d−1
4

)
Γ
(
d+1
4

) , (7.1)

d ≥ 3, x|x|−2 ∈ Fδ1 ,
√
δ1 =

2

d− 2
. (7.2)

In fact, (7.2) coincides with the classical Hardy inequality.
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4. An important proper subclass of F1/2

δ that is not contained in the Morrey class M1+ε,
regardless of how small ε > 0 is, is the Kato class. The Kato class consists of vector fields
b ∈ [L1

loc]
d such that

∥(λ−∆)−
1
2 |b|∥∞ ≤

√
δ

for some δ > 0 and λ = λδ ≥ 0 (The inclusion Kato class ⊂ F1/2

δ follows e.g. by duality and inter-
polation.) SDEs with Kato class drifts were treated by Bass-Chen [BC], who studied Brownian
motion on fractals such as the Sierpinski gasket. To be more precise, they considered measure-
valued b with the total variation |b| satisfying the Kato class condition. Moreover, when δ is
sufficiently small, one obtains two-sided Gaussian bounds on the heat kernel of −∆+ b · ∇ [Za].
Note that the Kato class does not contain [Ld]d, but, for every fixed ε > 0, it contains some vector
fields that are not in [L1+ε

loc ]d.

The proof of the next theorem is based on the resolvent representation (7.6) where we, crucially,
work with the fractional powers |b| 1r for r > d− 1 (so, we take advantage of the fact that b is not
distributional or measure-valued).

Theorem 7.1 ([K1, KS1]). Let d ≥ 2. Assume that b ∈ F1/2

δ with weak form-bound δ satisfying

δ < m−1
d

{
4(d−2)
(d−1)2 if d ≥ 4,
1 if d = 2, 3,

where md := π
1
2 (2e)−

1
2 d

d
2 (d− 1)

1−d
2 . The following are true:

(i) (Weak solution to SDE) There exist a strong Markov family of probability measures
{Px}x∈Rd on the canonical space of continuous trajectories C that deliver, for every
x ∈ Rd, a weak solution to SDE

Xt = x−
ˆ t

0

b(Xr)dr +
√
2Bt. (7.3)

(ii) (Feller semigroup)

(e−tΛ(b)f)(x) := EPx [f(Xt)], x ∈ Rd,

is a strongly continuous Feller semigroup on C∞.

(iii) (Uniqueness of weak solution to Kolmogorov backward PDE [KS5]) v(t) := e−tΛ(b)f ,
f ∈ C∞ ∩ L2, is the unique weak solution to Cauchy problem

(∂t −∆+ b · ∇)v = 0, v|t=0 = f,

in the “shifted” triple of Bessel potential spaces W 3
2 ,2 ↪→ W 1

2 ,2 ↪→ W− 1
2 ,2. This result

yields approximation uniqueness for {Px}x∈Rd .

(iv) (Another kind of approximation uniqueness) If {Qx}x∈Rd is another weak solution to (7.3)
such that

Qx = w-P(C)- lim
n

Px(b̃n) for every x ∈ Rd,

for some {b̃n} ⊂ F1/2

δ1
∩ [Cb ∩ C∞]d with δ < 4(d−2)

(d−1)2 if d ≥ 4 or mdδ < 1 if d = 2, 3, and
λδ independent of n, then {Qx}x∈Rd = {Px}x∈Rd .
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(v) (Elliptic gradient bounds) u := (µ+Λ(b))−1f , f ∈ C∞∩Lr, r ∈]d−1, 2
1−

√
1−mdδ

[, satisfies

∥(µ−∆)
1
2+

1
2su∥r ≤ K∥(µ−∆)−

1
2+

1
2ℓ f∥r, for all 1 ≤ ℓ < r < s,

for all µ greater than a generic µ0 (cf. (5.9)). In particular, since r > d− 1, we can select
s sufficiently close to r so that by the Sobolev embedding theorem u is Hölder continuous.

Corollary 7.1 (Finite particle approximation of the elliptic-parabolic Keller-Segel model). In
R2N , consider SDE

Xt = x0 −
ˆ t

0

b(Xs)ds+
√
2Bt, x0 = (x10, . . . , x

N
0 ) ∈ R2N , (7.4)

where Bt = (B1
t , . . . , B

N
t ) is a Brownian motion in R2N , and

bi(x
1, . . . , xN ) :=

√
κ

N

N∑
j=1,j ̸=i

xi − xj

|xi − xj |2
. (7.5)

Then, provided that κ < C
N3 , the assertions of Theorem 7.1 are valid for this particle system.

Proof. Thus defined drift b : R2N → R2N is in F1/2

δ . In fact, it is in the Morrey class M1+ε, a
subclass of F1/2

δ . To see this, it suffices to prove this inclusion for a single term

R2N ∋ (x1, . . . , xN ) 7→ x1 − x2

|x1 − x2|2

which, after a change of variable, reduces to proving that the scalar function (x1, . . . , xN ) 7→ |x1|−1

is in the Morrey class M1+ε. Put Cr(x) = Dr(x
1)× · · · ×Dr(x

N ) (the direct product of N discs
centered at xi). We have

∥|x1|−1∥M1+ε ≤ c sup
r>0

r

(
1

r2N
⟨1Cr(0)|x

1|−(1+ε)⟩
) 1

1+ε

= c sup
r>0

r

(
1

r2

ˆ
Dr(0)

|x1|−(1+ε)dx1
) 1

1+ε

= c sup
r>0

r

(
1

r2

ˆ r

0

t−(1+ε)+1dt

) 1
1+ε

= c sup
r>0

r

(
1

r2
r−ε+1

−ε+ 1

) 1
1+ε

<∞.

□

The main, quite unacceptable drawback of Corollary 7.1 is that the condition on κ degenerates
as N → ∞. Fournier-Jourdain [FJ], Fournier-Tardy [FT] and Tardy [T] exploit the special form
of the interaction kernel in (7.5) and establish for (7.4), among other results, weak existence and
the existence of mean field limit as N → ∞ for all κ ∈ [0, 16[, where 16 is the sticky collisions
threshold for (7.4), (7.5). One can also apply the Dirichlet forms approach, see Cattiaux-Pédèches
[CP]. Already the weak existence results of [FJ] are thus much stronger than Corollary 7.1. Our
point here, however, is different. Corollary 7.1 shows that one, in fact, can reach the Keller-Segel
finite particle system (7.4), (7.5) by applying results on general singular SDEs. (Fournier and
Jourdain noted that, at the time of writing, the strongest known SDEs results for general singular
drift did not apply (7.5). This was indeed true, but only until the preprint [KS1] appeared a few
months later; unfortunately, at the time of writing [KS1] we were not aware of papers [CP, FJ].)
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One advantage of Theorem 7.1, compared to [CP, FJ, FT, T], is that we can easily modify the
drift in Corollary 7.1. For example, multiplying each interaction kernel by a function with L∞

norm less or equal to one does not affect the conclusion.

Remarks. 1. Replacing condition b ∈ Fδ by more general condition b ∈ F1/2

δ comes at a cost.
Although one can still include some diffusion coefficients, these may no longer be discontinuous
(cf. [K4, Sect. 14]). Also, distributional drifts q ∈ BMO−1 are out of reach. It is, however, possible
to consider drifts b + q, where b ∈ F1/2

δ and q is measure-valued with total variation in the Kato
class [K8].

2. In Theorem 7.1, we construct the candidate for resolvent of the Feller generator a priori. It
is the following formal Neumann series for

µ+ Λ ⊃ µ−∆+ b · ∇,

possibly after a modification on a measure set [K1]:

(µ+ Λ)−1f := (µ−∆)−1f − (µ−∆)−
1
2−

1
2sQr(1 + Tr)

−1Gr(µ−∆)−
1
2+

1
2ℓ f, (7.6)

where f ∈ Lr ∩ C∞, and

Qr := (µ−∆)−
1
2+

1
2s |b| 1r′ , Gr := b

1
r · ∇(µ−∆)−

1
2−

1
2ℓ are bounded on Lr,

Tr := b
1
r · ∇(µ−∆)−1|b| 1r′ bounded on Lr,

where
b

1
r := |b|−1+ 1

r b, ℓ, s satisfy 1 ≤ ℓ < r < s,

and, of course, one gets stronger regularity result by choosing ℓ, s close to r. The proof of the
boundedness of Qr, Gr and Tr is based on the Stroock-Varopoulos inequalities for symmetric
Markov generators, i.e. this is an elliptic argument. The smallness condition on δ in Theorem
7.1 ensures ∥Tr∥r→r < 1, so that (1 + Tr)

−1 converges as geometric series in Lr. Earlier, similar
estimates were employed in [BS, LS] to refine the L2 theory of Schrödinger operators with the
usual form-bounded potentials to an Lr theory, which allowed the authors, for instance, to obtain
additional information about the Sobolev regularity of the eigenfunctions of Schrödinger operators.

3. A priori, it is not clear why (7.6) should determine the resolvent of a strongly continuous
semigroup in Lr. The latter is, in fact, true: the proof uses Hille’s theory of pseudoresolvents
[K1]. When r = 2, one can give a different proof using Lions’ variational approach, but it requires
working in a quintuple of Hilbert spaces (instead of the usual triple) [KS3].

4. Having an explicit candidate for the limiting object, i.e. the Feller resolvent, greatly simplifies
the approximation arguments. In Theorem 5.1, no such representation is available, so one must
rely on Trotter’s approximation theorem, whose key feature is that it does not require any a priori
representation of the limiting operator.

5. Although these broad assumptions on b destroy the usual Lr estimates for second-order
derivatives of solution u to (µ−∆+ b ·∇)u = f , one can still use (7.6) to obtain some Lr bounds
on ∇2u. However, either one needs restriction r < d or these estimates are valid only in weighted
space Lr(Rd, (1 + |b(x)|)−r + 1dx). (The latter follows by applying (1 + |b|)− 1

r′ (µ−∆) to (7.6);
note that with the information about the second derivatives of u disappears at the points where
|b| is infinite, but in a controlled way, see [K4] for more detailed discussion.)
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The elliptic-parabolic Keller-Segel model of chemotaxis is the following nonlinear Kolmogorov
forward equation in R2:

∂tη −∆+ div
(
ηK ⋆ η

)
= 0, η|t=0 = η0 ≥ 0, K(x) =

√
κ
x

|x|2
, (7.7)

where ηt is the concentration density of the chemoattractant, ⟨ηt⟩ = ⟨η0⟩ = 1, and (K ⋆η)(s, x) =
⟨K(x−·)η(s, ·)⟩. The corresponding diffusion process Xt, i.e. ηt = LawXt, satisfies the non-linear
SDE

Xt = X0 −
ˆ t

0

(K ⋆ η)(s,Xs)ds+
√
2Bt, η0 = LawX0, (7.8)

which arises as the mean field limit of the finite particle systems in Corollar 7.1 (see [FJ]). A crucial
question in studying the Keller-Segel model is whether one can cover the entire range of admissible
values of the strength of attraction κ, beyond which a blow up occurs in finite time, i.e. starting
with X0 having density that is absolutely continuous with respect to the Lebesgue measure, a
delta-function develops in finite time [CPZ, JL]. Once again, we refer to [CP, FJ, FT, T] for very
detailed results in this direction.

Theorem 7.1 covers only time-homogeneous drifts and therefore does not apply directly to SDE
(7.8). In [K5], a time-inhomogeneous analogue of Theorem 7.1 addresses this issue. It provides,
in particular, conditional weak uniqueness for the SDE and strong a priori gradient bounds for
a large class of McKean-Vlasov PDEs. Compared to Theorem 7.1, the result in [K5] restricts
somewhat the class of admissible drifts: one requires

b1 + b2, b2 ∈ L∞(R1+d), b1 ∈ E1+ε

for some ε > 0, where

∥b1∥E1+ε := sup
r>0,z∈R1+d

r

(
1

|Cr|

ˆ
Cr(z)

|b1(t, x)|1+εdtdx
) 1

1+ε

is the parabolic Morrey norm. Here

Cr(t, x) := {(s, y) ∈ R1+d | t ≤ s ≤ t+ r2, |x− y| ≤ r}

is the parabolic cylinder. The reason for this restriction is that, at least at the moment, we have to
replace the elliptic argument based on the Stroock-Varopoulos inequalities by an argument based
on a parabolic variant of Adams’ estimate in Lemma C.1. Nonetheless, we have partial results
suggesting that [K1] and [KS1] can be extended to time-inhomogeneous, weakly form-bounded
drifts, thus eliminating the need for Morrey-class assumptions.

For integer powers of |b|, the parabolic Adams’ estimate was obtained by Krylov [Kr6] who
needed it for somewhat different purposes, i.e. to handle discontinuous diffusion coefficients. How-
ever, the proof in [Kr6] can be extended to fractional powers b

1
r , |b| 1r′ , as is needed in [K5] to run

analogous to (7.6) representations for the Duhamel series for ∂t −∆+ b · ∇.
Drifts in the class E1+ε can have strong singularities in time, for instance,

|b1(t, x)| ≤ |t− t0|−1/2, (t, x) ∈ R1+d

or, more generally, in L2,∞(R, L∞(Rd)), i.e. in the weak L2 class in time. Let us also add that the
|t|− 1

2 blow up rate in time is essentially embedded in the Koch-Tataru class (3.5).
The method of the fractional resolvent representations of Neumann (Duhamel) series was also

applied in [K7] and [K5]. That said, the proof of ∥Tr∥r→r < 1 in [K7] is quite different and does
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not use Stroock-Varopoulos or Adams’ estimates, thereby achieving the least restrictive conditions
on δ.

Finally, if one assumes extra spatial regularity of the drift, such as Hölder continuity with
exponent 2

s − 1 with 1 < s < 2, then it suffices to require Lorentz Ls,1 regularity in time, see
[HWY].

The extension of Theorem 7.1 to SDEs driven by isotropic α-stable process was obtained in
[KM3]; see also [K9] regarding time-inhomogeneous drifts in this non-local setting.

8. Critical divergence and the best constant in many-particle Hardy inequality

1. We can substantially relax condition (κhyp) on the strength of attraction between the parti-
cles in Example 5.1 by employing the many-particle Hardy inequality of [HHLT] and the following
variant of Theorem 5.1.

Let b ∈ [L1
loc]

d be a vector field with divergence div b ∈ L1
loc. Let (div b)+ denote the positive

part of div b.

Definition 8.1. We say that “potential” (div b)+ is form-bounded, and write (div b)1/2+ ∈ Fδ+ , if

⟨(div b)+, φ2⟩ ≤ δ+⟨|∇φ|2⟩+ cδ+⟨φ2⟩ ∀φ ∈ C∞
c

for some constants δ+ and cδ+ .

Theorem 8.1. Let{
b ∈ Fδ with δ <∞, (div b)

1
2
+ ∈ Fδ+ with δ+ < 4, (div b)− ∈ L1 + L∞,

q ∈ BMO−1.

Let {bn} ∈ [b]′ (see Definition 3.4), {qm} ∈ [q]. Then Theorem 5.1 and Theorem 5.1(i) remain
valid.

Example 8.1. Let us establish weak well-posedness of particle system (5.12) using Theorem 8.1
rather than Theorem 5.1. The difference between the two theorems is in the assumptions on the
drift b(x) = (b1(x), . . . , bN (x)),

bi(x) :=
1

N

N∑
j=1,j ̸=i

√
κ
d− 2

2

xi − xj

|xi − xj |2
, x = (x1, . . . , xN ).

We already know that this drift is form-bounded, but what matters in Theorem 8.1 is the form-
bound of potential

(div b(x))+ = div b(x) =
√
κ
(d− 2)2

N

∑
1≤i<j≤N

1

|xi − xj |2
.

To verify the form-boundedness of (div b)+, we invoke the many-particle Hardy inequality: for
d ≥ 3, all N ≥ 2,

Cd,N
∑

1≤i<j≤N

ˆ
RNd

|φ(x)|2

|xi − xj |2
dx ≤

ˆ
RNd

|∇φ(x)|2dx (8.1)

for all φ ∈ W 1,2(RNd), where, from now on, Cd,N denotes the best possible constant in (8.1).
Hence

(div b)
1
2
+ ∈ Fδ+ , δ+ =

√
κ
(d− 2)2

N
C−1
d,N .
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To the best of our knowledge, the problem of finding the exact value of Cd,N is still open. It is not
difficult to obtain a crude lower bound on Cd,N by summing up the ordinary Hardy inequalities
for the inverse square potential xi 7→ |xi − xj |−2, each in its own copy of Rd. However, as is
pointed out by Hoffmann-Ostenhof, Hoffmann-Ostenhof, Laptev and Tidblom in [HHLT], this
lower bound on Cd,N is quite suboptimal. They provided a finer argument that gives a much
better lower bound

Cd,N ≥ (d− 2)2 max

{
1

N
,

1

1 +
√
1 + 3(d−2)2

2(d−1)2 (N − 1)(N − 2)

}
. (8.2)

Therefore, it suffices for us to require
κ < 16 (κhyp2)

which guarantees δ+ < 4 and allows us to apply Theorem 8.1. Comparing (κhyp2) with (κhyp) in
Example 5.1, we see that Theorem 8.1 improves the admissible range for κ by nearly a factor of
four.

This gain comes at the cost: we restrict possible modifications of the interaction kernel. Indeed,
if we use Theorem 5.1 then we can multiply each interaction kernel by a discontinuous function
with the L∞ norm less or equal to one, and the many-particle drift b remain form-bounded with
the same form-bound δ. By contrast, if we use if we use Theorem 8.1, such modification of the
interaction kernel is problematic since it will affect the divergence of the drift.

2. We argue that the relationship between the many-particle Hardy inequality and the particle
system

Xi
t = xi0 −

√
κ
d− 2

2

1

N

N∑
j=1,j ̸=i

ˆ t

0

Xi
s −Xj

s

|Xi
s −X

j
s |2

ds+
√
2Bit (8.3)

goes both ways. Namely, we can use the counterexample in (a’) of Section 4 to the weak well-
posedness of (8.3), i.e. when the strength of attraction κ is too large, to obtain an upper bound
on the best possible constant Cd,N in (8.1).

Theorem 8.2 (An upper bound on the constant in the many particle Hardy inequality (8.1)).

Cd,N ≤
d(d− 2)

N
.

Proof. By Theorem 8.1 and the calculation in the previous example, (8.3) has a weak solution for
every initial configuration of the particles provided that

√
κ
(d− 2)2

N
C−1
d,N < 4.

On the other hand, by the counterexample in (a’) of Section 4, if κ > 16( d
d−2)

2, then (8.3) does
not have a weak solution, so we must have

4
d

d− 2

(d− 2)2

N
C−1
d,N ≥ 4,

otherwise a weak solution would exist. This gives the sought upper bound on Cd,N . □

In [HHLT], the authors also provided, among other results, the following upper bound:

Cd,N ≤
2d

2(N − 1)
π

d
2Γ

(
d

2

)
. (8.4)
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Their argument uses particular test functions in (8.1). Corollary 8.2 improves (8.4) for all
d ≥ 3, N ≥ 3. Natually, it gives the same asymptotics in N , but it improves substantially
the dependence on the dimension d, i.e. we now have polynomial growth versus factorial growth
in d. Of course, the simplicity of the proof of Theorem 8.2 is only seeming: we apply Theorem
8.1 whose proof uses De Giorgi’s method.

Theorem 8.2 shows that the lower bound (8.2) of [HHLT] is close to optimal, at least in high
dimensions.

3. We can relax the assumptions on b in Theorem 8.1 as follows.

Definition 8.2 (Multiplicative form-boundedness). A vector field b ∈ [L1
loc(R]d is said to be

multiplicatively form-bounded if

⟨|b|φ,φ⟩ ≤ δ∥∇φ∥2∥φ∥2 + cδ∥φ∥22 ∀φ ∈ C∞
c .

This will be abbreviated as b ∈MFδ.

Once again, the constant cδ plays a secondary role when it comes to handling local singularities
of b (e.g. cδ > 0 allows to include L∞ drifts).

Mazya [M, Sect. 1.4.7] proved that

⟨|b|φ,φ⟩ ≤ δ∥∇φ∥2∥φ∥2 ∀φ ∈ C∞
c for some δ <∞ ⇔ sup

r>0,x∈Rd

⟨|b|1Br(x)⟩ ≤ Cr
d−1

for some C <∞, i.e. there is a complete characterization of MFδ in terms of Morrey spaces:

∪δ>0MFδ (with cδ = 0) = M1 (8.5)

(see Appendix D for the proof). Let us emphasize that for the class of form-bounded vector fields
one only has inclusions

M2+ε ⊂ ∪δ>0Fδ (with cδ = 0) ⊂ M2, (8.6)

where ε > 0 is fixed arbitrarily small, i.e. there is no complete characterization of Fδ in terms of
Morrey spaces. See discussion in Section 3.

Comparing (8.5) and (8.6), one sees that one gains quite a lot in admissible singularities of b by
passing from form-bounded drifts to multiplicatively form-bounded drifts. Of course, this comes
at expense of imposing conditions on div b.

Theorem 8.3. The following are true:
(i) (Classical martingale solutions [KS2]) If

|b|
1+ν
2 ∈ Fδ ν ∈]0, 1], δ <∞,

and
(div b)

1/2
+ ∈ Fδ+ , δ+ < 4, (div b)− ∈ L1 + L∞, (8.7)

then, for every x ∈ Rd, SDE

Xt = x−
ˆ t

0

b(Xs)ds+
√
2Bt

has a martingale solution Px.
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(ii) (Approximation uniqueness and Markov property [K6]) If, in addition to the assumptions
of (i), b ∈ MFδ for some δ < ∞, then there exists 0 < γ < 1 such that, regardless of
the choice of {bn} ∈ [b] (defined in the same way as in Section 3.2, i.e. to preserve the
structure constants of b), provided that {bn} additionally satisfies

bn → b in [L1+γ ]d,

we have convergence
Pnx → Px weakly in P(C),

of the martingale solutions {Pnx} to the approximating SDEs

Xn
t = x−

ˆ t

0

bn(X
n
r )dr +

√
2Bt. (8.8)

Furthermore, {Px}x∈Rd is a Markov family.

(iii) (Feller semigroup) In the assumptions of (ii),

Ttf(x) := EPx [f(ωt)], f ∈ C∞

is a strongly continuous Feller semigroup on C∞, say, Tt =: e−tΛ, where the generator Λ
is thus appropriate operator realization of the formal operator −∆+ b · ∇ in C∞.

The novelty is in assertion (iii). Its proof uses the Trotter approximation theorem in the same
way as the proof of Theorem 5.1.

Remark 8.1 (L2 vs L1+γ , γ < 1). If, in the setting of Theorem 8.3(i), we additionally require
b ∈ [L2

loc(Rd)]d, then it is also possible to prove a.e. approximation uniqueness. The last condition
is actually satisfied if time-inhomogeneous b is a Leray-Hopf solution of the 3D Navier-Stokes
equations, i.e. then one has b ∈ L∞([0, 1], [L2

loc(Rd)]d). This was explored by a number of authors,
see the next Remark 8.2. There are, however, other classes of solutions to 3D N-S equations
that are not uniformly in t square integrable, such as the critical class (3.5) of Koch and Tataru.
So, we are interested in finding different additional conditions on b that do not require square
integrability, but still allow us to prove, among other results, the approximation uniqueness. This
is the condition b ∈MFδ in Theorem 8.3(ii).

The proof of the approximation uniqueness in Theorem 8.3(ii) uses an L
1+γ
γ (Rd) gradient bound

on solutions of the corresponding elliptic Kolmogorov equation (Lemma 10.3). It is proved by
means of the Gehring-Giaquinta-Modica’s lemma (Lemma 20.1), so γ can be estimated explicitly,
see Remark 20.1.

To use Gehring-Giaquinta-Modica’s lemma, we need Caccioppoli’s inequality. The proof of Cac-
cioppoli’s inequality for multiplicatively form-bounded drifts employs an extra iteration procedure
(“Caccioppoli’s iterations”) which was introduced in our previous paper [KV] to study regularity
of solutions of Dirichlet problem for the drift-diffusion equation. Namely, for v = (u − k)+ and
cutoff function η one has

⟨b · ∇u, ηv⟩ = 1

2
⟨b · ∇v2, η⟩

= −1

2
⟨b · ∇η, v2⟩

≤ 1

2
⟨|b|, ψ2⟩, where ψ :=

√
|∇η|v.
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By b ∈MFδ (for simplicity, take cδ = 0),

⟨|b|, ψ2⟩ ≤ δ∥∇(v
√
|∇η|)∥2∥v

√
|∇η|∥2

≤ δ
(
∥(∇v)

√
|∇η|∥2 + ∥v∇

√
|∇η|∥2

)
∥v
√
|∇η|∥2,

so

⟨|b|, ψ2⟩ ≤ C1

r2 − r1
∥(∇v)1Br2

∥2∥v1Br2
∥2 +

C1

(r2 − r1)2
∥v1Br2

∥22,

provided that η is equal to 1 on Br1 , is zero outside of Br2 , and its derivatives satisfy appropriate
estimates. The first term in the RHS contains both ∇v and the indicator function of the ball of
larger radius, so we cannot simply apply Cauchy-Schwarz’ inequality to obtain the Caccioppoli
inequality. But it is possible to arrive at the Caccioppoli inequality by iterating over a sequence
of intermediate balls with radii between r1 and r2.

Remark 8.2 (Critical divergence, super-critical drift). Some results for the operator −∆+ b · ∇
depend only on div b. For instance, if (div b)

1/2
+ ∈ Fδ+ , δ+ < 4, then the solution v to the

Kolmogorov backward equation

(∂t −∆+ b · ∇)v = 0, v|t=0 = v0,

satisfies, for all 2

2−
√
δ+

< q ≤ p ≤ ∞, the dispersion estimate

∥v(t)∥p ≤ Ceωtt−
d
2 (

1
p−

1
q )∥v0∥q, t > 0.

The proof is due to J. Nash, see [KS3] for details. While one needs smoothness and boundeness
of b and v0 to carry out integration by parts, the constants C and ω depend only on d and δ+.
They and do not depend on any integral characteristics of b.

However, to obtain more detailed information about the diffusion process with drift b, one must
impose some conditions on b. For instance, in Theorem 8.1 we also required b ∈ Fδ.

Between these two types of assumptions, there are intermediate conditions, such as in assertion
(i) of Theorem 8.3. In this assertion, selecting ν close to zero, one can treat b that can be essentially
twice more singular than the vector fields in Fδ. This is a super-critical condition on the drift in
the sense of scaling. Let us recall the sub-critical/critical/super-critical classification of the spaces
of vector fields. Given a vector field b, put bλ(x) := λb(λx). Let Y be a translation-invariant
Banach space of distribution-valued vector fields b such that

∥bλ∥Y = λa∥b∥Y .

Now,

a > 0, then Y is sub-critical, i.e. passing to the small scales decreases the norm,
a = 0, then Y is critical,
a < 0, then Y is super-critical.

In the last two cases “zooming in” does not change the norm or makes the norm larger. For
example, Lp is sub-critical, critical or super-critical according to whether p > d, p = d or p < d.
This classification is widely used in the study of Navier-Stokes equations. There one applies it to
spaces of solutions or initial data.
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The super-critical condition on b appearing in assertion (i) was introduced in the work of
Q.S. Zhang [Za2]. He considered the time-inhomogeneous counterpart of |b| 1+ν

2 ∈ Fδ, namely,
b ∈ [L1+ν

loc (R1+d)]d and for a.e. t ∈ R

⟨|b(t, ·)|1+νφ,φ⟩ ≤ δ∥∇φ∥22 + gδ(t)∥φ∥22 ∀φ ∈ C∞
c (Rd) (8.9)

where 0 ≤ gδ ∈ L1
loc(R) describes how irregular b can be in time. He established, among other

results, local boundedness of any weak solution to the parabolic equation

(∂t −∆+ b · ∇)v = 0 on R1+d,

provided that div b ≤ 0 and
b ∈ [L2

loc(R1+d)]d. (8.10)

The last condition is satisfied if b is taken to be a Leray-Hopf solution of 3D Navier-Stokes
equations, which motivated [Za2].

The proof of Theorem 8.3(i) uses a tightness estimate for solutions of the approximating SDEs
with bounded smooth drifts (cf. (8.16)). The proof of that estimate, in turn, uses the idea from
[Za2] for handling cutoff functions in presence of b satisfying (8.9).

The first result on SDEs with suprcritical divergence-free drifts belongs to X. Zhang and G. Zhao
[ZZ1]. They considered

Xt = x−
ˆ t

s

b(r,Xr)dr +
√
2(Bt −Bs), t ≥ s, (8.11)

with divergence-free drift b additionally satisfying the square integrability condition (8.10), and
included in the super-critical Ladyzhenskaya-Prodi-Serrin condition

|b| ∈ Lq([0, T ], Lp(Rd)), p, q ≥ 2,
d

p
+

2

q
< 2. (SLPS)

They proved that for every initial data (s, x) ∈ R1+d the SDE (8.11) has a weak solution satisfying
a Krylov type estimate. Moreover, using hypothesis (8.10), they proved that outside a measure
zero set of (s, x) one has approximation uniqueness and a.s. Markov property for these weak
solutions. Consequently, the weak well-posedness result of [ZZ1] justifies the passive tracer model
in the Leray-Hopf setting under the a priori assumption (SLPS). They also allow the positive
part (div b)+ of the divergence of b to be singular, provided it satisfies condition (SLPS) (possibly
with different exponents p, q). In recent paper [HZ], Z. Hao and X. Zhang extended the results in
[ZZ1] to divergence-free super-critical distributional drifts.

Let us add that condition (8.10) is quite powerful. For instance, if one assumes only div b ≤
0 and (8.10), then it is already sufficient to prove weak uniqueness results for the backward
Kolmogorov equation in L1 [GS].

It is easy to show, using Hölder’s inequality, that (SLPS) is a subclass of (8.9). It is a proper
subclass. Indeed, (8.9) contains some vector fields having strong hypersurface singularities that
are not covered by (SLPS).

The main focus of Theorem 8.3(i) was reaching the blow up threshold for δ+ for (div b)+. As
a by-product, it also closes the gap (at the level of weak existence for SDE (8.11)) between the
hypotheses on the drift in [ZZ1] and in [Za2].

There remains nontrivial (as it seems to us) work left to establish weak existence for SDEs whose
drifts lie in an even larger class of super-critical divergence-free drifts, namely, those considered
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by Q.S. Zhang in [Za3]:〈
|b(t)| log(1 + |b(t)|)2φ,φ

〉
≤ δ∥φ∥22 + gδ(t)∥φ∥22 ∀φ ∈ C∞

c (Rd) for a.e. t ∈ R. (8.12)

Remark 8.3 (Heat kernel bounds). Although in the results mentioned so far it is the singular
positive part of div b that presents an obstacle to the well-posedness of the SDE, something nice
that can be said about the case of positive divergence. Namely, assume that a ∈ Hξ, i.e. we have
a bounded symmetric uniformly elliptic matrix field. Let

b ∈ Fδ, δ < 4ξ2,

and
div b ≥ 0.

Then the heat kernel p(t, x, y) of −∇·a·∇+b·∇, defined as the integral kernel of the corresponding
C0 semigroup in Lp, p > 2

2−ν−1
√
δ
, constructed via a suitable regularization of a and b, satisfies,

possibly after a modification on a measure zero set, the Gaussian lower bound

c1Γc2(t, x− y)e−c3t ≤ p(t, x, y), (8.13)

where Γc(t, x) := (4πct)−
d
2 e−

|x|2
ct and c1, c2 > 0, c3 ≥ 0, see [KS4].

Under the above assumptions on b there is no Gaussian upper bound on p(t, x, y). In fact,
the counterexample is given by the Brownian particles considered in Example 1.1, see the end of
Section 4. Consequently, the proof of (8.13) does not reply on a Gaussian upper bound which, to
the best of our knowledge, is the first result of this type.

Remark 8.4 (More on the case div b = 0). 1. Let b = b(x). In the case div b = 0, there is
an alternative approach to the proof of the approximation uniqueness for b ∈ MFδ. Namely,
Mazya-Verbitsky [MV, Theorem 5] proved equivalence

|⟨bφ, φ⟩| ≤ δ∥∇φ∥2∥φ∥2 ∀φ ∈ C∞
c ⇔ b = ∇Q for some Q ∈ [BMO]d×d, (8.14)

where the LHS is, clearly, more general that b ∈ MFδ. So, one can use this representation for
divergence-free b, put the anti-symmetric matrix Q in the diffusion coefficients, and then prove
uniqueness of the weak solution to Cauchy problem for the Kolmogorov parabolic equation by
working in the standard Hilbert triple W 1,2 ↪→ L2 ↪→W−1,2, see [QX].

2. Assuming that b ∈MFδ, div b = 0, Semënov [S] proved two-sided Gaussian bounds

C1Γc2(t− s, x− y) ≤ p(t, s, x, y) ≤ C3Γc4(t− s, x− y), (8.15)

where p(t, s, x, y) is the heat kernel of the Kolmogorov operator −∇·a ·∇+ b ·∇ with measurable
symmetric uniformly elliptic a. He used Moser’s method to prove the upper bound. His proof of
the lower bound is based on a substantial modification of Nash’s method. Next, Qian-Xi [QX]
established two-sided Gaussian bounds for all q = ∇Q ∈ BMO−1. The approach of [S] can be
extended to the drifts having singular divergence, and allows to obtain lower and upper Gaussian
bounds that hold either independently or simulatneously, cf. Remark 8.3.

Having two-sided Gaussian bounds greatly simplifies the analysis of the corresponding diffusion
process, e.g. one obtains right away the Feller propagator, the continuity of trajectories follows
easily from the Kolmogorov continuity criterion. Let us show how the tightness of the martingale
solutions Pnx of the approximating SDEs (8.8) follows from the upper Gaussian bound (our un-
derlying goal here is to demonstrate how natural condition b ∈MFδ is). The tightness argument
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requires, as its point of departure, the estimate

EPn
x

ˆ t0+ε

t0

|bn(ωr)|dr ≤ H(ε), 0 ≤ t0 ≤ 1, 0 < ε < 1, (8.16)

for a continuous function H such that H(ε) ↓ 0 as ε ↓ 0. By Itô’s formula, EPn
x

´ t1
t0
|bn(ωr)|dr =

un(t0, X
n
t0), where un solves ∂tun + ∆un − bn · ∇un + |bn| = 0, un(t1) = 0. After reversing the

direction of time, we can deal instead with the initial-value problem

(∂t −∆+ bn · ∇)vn = |bn|, vn|t=0 = 0. (8.17)

(with some abuse of notation, we continue denoting the drift by bn). By the Duhamel formula,

v(t, x) =

ˆ t

0

⟨p(t, s, x, ·)|bn(·)|⟩ds,

so, applying the upper Gaussian bound on the heat kernel p = pn, we obtain (put Γt,x :=
Γc4(t− s, x− ·)):

|v(t, x)| ≤ C3

ˆ t

0

⟨|b|
√
Γt,x,

√
Γt,x⟩ds

(we use b ∈MFδ) (8.18)

≤ C3

ˆ t

0

(
δ∥∇

√
Γt,x∥2∥

√
Γt,x∥2 + cδ∥

√
Γt,x∥22

)
ds

= C3

ˆ t

0

(
δ∥∇

√
Γt,x∥2 + cδ

)
ds

= C3

ˆ t

0

(
δ

√
d

8c4

1

t− s
+ cδ

)
ds,

which yields (8.16) for H(t) = C
√
t+ cδt.

The above argument works for time-inhomogeneous multiplicatively form-bounded drifts: |b| ∈
L1
loc(R1+d) and for a.e. t ∈ R

⟨|b(t, ·)|φ,φ⟩ ≤ δ∥∇φ∥2∥φ∥2 + gδ(t)∥φ∥22 ∀φ ∈ C∞
c , (8.19)

where gδ ≥ 0 (measuring the singularity of b in time) is assumed to be in the weak L2 class on R,
that is,

´ t1
t0
g(s)ds ≤ c

√
t1 − t0 with constant c independent of t0, t1 ∈ R.

Let us note that the upper Gaussian bound that we assumed above is valid e.g. if b ∈ MFδ
and div b ≤ 0 or, more generally, (div b)+ is in the Kato class, see [KS4] regarding the time-
homogeneous case and [KS5] regarding the time-inhomogeneous case (8.19).

We conclude by returning to super-critical drifts. Q.S. Zhang [Za2] and Qian-Xi [QX2] also
obtained non-Gaussian upper bounds on the heat kernel of −∆ + b · ∇ with supercritical b. It
would be interesting to “test” the optimality of these bounds and try to dedeuce the tightness
estimate of [ZZ1] from them, in the same way as it was done above for b ∈MFδ and the Gaussian
upper bound. Of course, the calculations become more complicated due to the lack of a scaling
invariance in these bounds.
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9. Further remarks

Remark 9.1 (De Giorgi’s method in Lp). This remark concerns the proofs of Theorems 5.1, 5.2,
6.1 and 8.1. We run De Giorgi’s method in Lp for p > 2

2−
√
δ
, and so we need δ < 4. The condition

p >
2

2−
√
δ

comes from the following elementary calculation for the Kolmogorov backward equation. Let
b ∈ Fδ and q ∈ BMO−1 be additionally bounded and smooth, and let us assume for simplicity
that cδ = 0 (otherwise we need to add a constant term in the Kolmogorov equation to absorb
cδ > 0). Consider the Cauchy problem (∂t −∆ + (b + q) · ∇)v = 0, v|t=0 = v0 ∈ C∞

c . Without
loss of generality, v0 ≥ 0, and so v ≥ 0. Multiply equation by vp−1 and integrate by parts. Since
div q = 0, one finds

1

p
⟨∂tvp⟩+

4(p− 1)

p2
⟨|∇v

p
2 |2⟩+ 2

p
⟨b · ∇v

p
2 , v

p
2 ⟩ = 0,

or, equivalently,

∂t⟨vp⟩+
4(p− 1)

p
⟨|∇v

p
2 |2⟩ = −2⟨b · ∇v

p
2 , v

p
2 ⟩.

Applying the Cauchy-Schwarz inequality in the last term gives

⟨∂tvp⟩+
4(p− 1)

p
⟨|∇v

p
2 |2⟩ ≤ 2

(
α⟨|b|2, vp⟩+ 1

4α
⟨|∇v

p
2 |2⟩

)
.

Now, applying b ∈ Fδ and selecting α = 1
2
√
δ
, we obtain

⟨∂tvp⟩+
[
4(p− 1)

p
− 2
√
δ

]
⟨|∇v

p
2 |2⟩ ≤ 0.

To keep the dispersion term positive, one needs 4(p−1)
p − 2

√
δ > 0, i.e. p > 2

2−
√
δ
. Hence

we need δ < 4. This calculation reappears (in slightly different form, e.g. for sub-solutions of the
Kolmogorov equation) in the proof of Theorem 5.1. Counterexamples discussed in the introduction
show that δ < 4 is sharp at least in high dimensions.

The observation that one should work in Lp, p > 2
2−

√
δ
, was made already in [KoS] in the

context of the Lp semigroup theory of −∆+ b · ∇, b ∈ Fδ. See also [CPZ, JL] where the authors
use energy methods in Lp to study regularity of solutions of the Keller-Segel equation, although
the optimal choice of p is not really discussed in these papers.

The point of departure for De Giorgi’s method is the Caccioppoli inequality. For illustration
purposes, assume that b ∈ Fδ has form-bound δ < 1, and so we can take p = 2. Also, let q = 0.
Then Proposition 17.1 gives: for every k ∈ R, the positive part w = (u − k)+ of u − k, where
(µ−∆+ b · ∇)u = f , satisfies

⟨|∇w|2, η2⟩ ≤ K1⟨w2, |∇η|2⟩+K2⟨(f − µw)2, η2⟩, (9.1)

where η is a smooth cutoff function, constant K depends only on d and δ, not on k. De Giorgi’s
method turns this Caccioppoli’s inequality into the Hölder continuity of u. (One can draw a loose
parallel between Caccioppoli’s inequality and the form-boundedness of the gradient ∇w, in which
case De Giorgi’s method becomes an embedding theorem from f to u into the space of Hölder
continuous functions. This is admittedly speculative, but we can to some extent justify this by
referring to a recent result of Krylov in [Kr3] on the regularity theory of inhomogeneous parabolic
equations in Rd+1 with drift, solution and its derivatives in appropriate Morrey classes, so to
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establish Hölder continuity of solutions he appeals to the Campanato embedding theorem rather
than the Sobolev embedding theorem.)

Remark 9.2 (On the choice of test function). It is interesting to abstract away the calculation
in the beginning of the previous remark to see if there are other test functions that allow for a
similar energy analysis of Cauchy problem (∂t −∆+ b · ∇)v = 0, v|t=0 = v0, where 0 ≤ v0 ∈ C∞

c .
We seek test functions φ(v) = φ(v(t)) such that φ ≥ 0, φ′ ≥ 0 and there exists a “conjugate”
function ψ satisfying ψ(0) = 0 and

ψ′ =
√
φ′, φ = aψψ′ (9.2)

for some constant a > 0 to be chosen (hence ψ ≥ 0). Multiplying the parabolic equation by φ(v)
and integrating by parts, we obtain

⟨∂tv, φ(v)⟩ = a⟨∂tv, ψ(v)ψ′(v)⟩ = a

2
⟨∂t(ψ(v))2⟩,

⟨−∆v, φ(v)⟩ = ⟨∇v, φ′(v)∇v⟩ = ⟨|∇ψ(v)|2⟩,

and

⟨b · ∇v, φ(v)⟩ = ⟨b · ∇ψ(v), aψ(v)⟩

≤ a
(
α⟨|b|2, (ψ(v))2⟩+ 1

4α
⟨|∇ψ(v)|2⟩

)
(take α = 1/2

√
δ and apply b ∈ Fδ (with cδ = 0))

≤ a
√
δ⟨|∇ψ(v)|2⟩.

Thus, we obtain an energy inequality of the form
a

2
∂t⟨(ψ(v))2⟩+

(
1− a

√
δ
)
⟨|∇ψ(v)|2⟩ ≤ 0.

In order for the disperson term to remain non-negative, we need to take in (9.2) a = 1√
δ

(or
smaller, but the equality is least restrictive on φ). So far, no constraint on δ has appeared, but it
will appear once we solve the resulting (from (9.2)) system{

ψ′ =
√
φ′,

φ = ψψ′
√
δ

⇒ φ′ =
1√
δ
(ψψ′′ + (ψ′)2),

so that ψ must satisfy

ψψ′′ = (
√
δ − 1)(ψ′)2.

Assuming ψ > 0 for v > 0, we can reduce order to obtain

ψ′ = Cψ
√
δ−1. (9.3)

We look for non-trivial solutions ψ that are defined globally. Hence the right-hand side of (9.3)
must grow at most linearly, which forces

√
δ − 1 ≤ 1 ⇒ δ ≤ 4.
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1. If −1 <
√
δ − 1 < 1, i.e. 0 < δ < 4, then we find ψ(v) = C1v

1

2−
√

δ , among other possible
solutions of this type (note that there is no uniqueness here). Then, using equation ψ′ =

√
φ′, we

find

φ(v) = cv
2

2−
√

δ
−1

= cvp−1, p :=
2

2−
√
δ
,

covering the classical power-type test function discussed in the beginning of this remark.
2. If δ = 4, then ODE (9.3) becomes linear. Taking, for instance, C = 1

2 in (9.3) yields the
non-trivial solution

ψ(v) = 2e
v
2 , φ(v) = ev.

This is essentially the test function used to treat the critical threshold δ = 4, see Remark 5.1.
Although ψ(0) ̸= 0, which fails the original requirement ψ(0) = 0 needed above to apply the
form-boundedness of b, one can overcome this by working with test functions φ(v) = ev − 1 or
φ(v) = ev − e−v multiplied by a cutoff function, or working on torus instead of Rd [K3, KS5].

A moment of reflection, after inspecting the test function φ(v) = ev − 1, suggests that the the
theory of the Kolmogorov equation in the critical regime δ = 4 in Remark 5.1 should be viewed
as the limit p→∞ of the asymptotic Lp theory, namely, with the non-standard Lp test function

φ(v) =

(
1 +

v

p

)p
− 1.

Accordingly, one needs to study solutions v of the Kolmogorov backward equation around 1. We
will address this point in subsequent paper.

Remark 9.3 (On time-inhomogeneous drifts). Let us outline an alternative to Theorem 5.1,
earlier approach to constructing Feller semigroup for −∆+ b · ∇, b ∈ Fδ [KoS, K2, KS8]. Using
gradient bounds in (5.10) (or, rather, a bound obtained by interpolating between the first and
the third terms in the left-hand side of (5.10)) and running parabolic Moser’s iterations for
solutions vn of (∂t−∆+ bn · ∇)vn, vn|t=0 = f , one obtains the following inequality with constant
C = C(d, T, ∥f∥∞, ∥∇f∥W 1,r) independent of n, m:

∥vn − vm∥L∞([0,T ]×Rd) ≤ C∥vn − vm∥
γ
L2([0,T ]×Rd))

, n,m ≥ 1, (9.4)

for certain fixed r. Crucially, γ does not depend on n, m and is strictly positive. It is relatively
easy to show that the right-hand side of (9.4) converges to zero as n,m→∞.

In this way, (5.10) allows to constructs the Feller semigroup e−tΛf := limn vn(t) for Λ ⊃
−∆ + b · ∇ directly. See [K2], see also recent improvements in [KS8]; these works extended and
simplified the pioneer work of Kovalenko-Semënov [KoS] that went via elliptic arguments.

Compared to the present paper, there is an important disadvantage to this construction, namely,
the use of gradient bounds (5.10) introduces a constraint on form-bound δ of b of the form

δ <
c

d2
, c≪ 1 (compare this with δ < 4 in Theorem 5.1),

so e.g. no applications to particle systems. There are, however, some advantages to this approach:
1) Estimate (9.4) opens up a way for obtaining quantitative estimates on the rate of con-

vergence of the approximating Feller semigroups, as long as one can estimate the rate of
convergence in L2 which is, in principle, a much simpler task.

In contrast, the proof of Theorem 5.1(i) uses compactness arguments, so there is no
way to control the rate of convergence.
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2) It does not use any elliptic results such as Trotter’s approximation theorem (Theorem
10.1), and works for time-inhomogeneous form-bounded drifts: for a.e. t ≥ 0,

⟨|b(t)|2, φ2⟩ ≤ δ∥∇φ∥22 + g(t)∥φ∥22, φ ∈W 1,2(Rd),
for a function 0 ≤ g = gδ ∈ L1

loc(R) that determines how irregular in time b is. (For
instance, Ladyzhenskaya-Prodi-Serrin class

|b| ∈ Lq([0, T ], Lp(Rd)), d

p
+

2

q
≤ 1

satisfies the above condition.) One thus obtains the corresponding to −∆ + b(t, x) · ∇
Feller propagator on C∞.

In view of the counterexamples (a), (b) in the introduction we are rather satisfied with condition
δ < 4 in Theorems 5.1 and 5.2(i). However, in the context of gradient bounds (as in Theorem
5.2(viii)), the question of what is the optimal condition on δ is still far from settled.

10. Proof of Theorem 5.1

Let us write, to shorten notations,

Λn,m := Λ(bn, qm) ≡ −∆+ (bn + qm) · ∇, D(Λn,m) = (1−∆)−1C∞.

(i) This assertion will follow from the Trotter approximation theorem (see e.g. [Ka, IX.2.5]).
Applied to contraction semigroups {e−tΛn,m}n,m≥1 in C∞, this theorem is stated as follows:

Theorem 10.1 (Trotter’s approximation theorem). Assume that there exists constant µ0 > 0
independent of n, m such that

1◦) supn,m≥1 ∥(µ+ Λn,m)−1f∥∞ ≤ µ−1∥f∥∞, µ ≥ µ0.
2◦) there exists s-C∞- limn limm(µ+ Λn,m)−1 for some µ ≥ µ0.
3◦) µ(µ+ Λn,m)−1 → 1 in C∞ as µ ↑ ∞ uniformly in n, m.

Then there exists a contraction strongly continuous semigroup e−tΛ on C∞ such that

e−tΛ = s-C∞- lim
n

lim
m
e−tΛn,m

locally uniformly in t ≥ 0.

10.0.1. Key PDE results.

Proposition 10.1 (Embedding property). Let wn,m is the classical solution to elliptic equation(
µ−∆+ (bn + qm) · ∇

)
wn,m = (bin + qim)f, f ∈ S. (10.1)

where we have fixed 1 ≤ i ≤ d and have denoted qim =
∑d
j=1∇jQijm. Put

Am := |Qim||∇f |+ (1 + |Qim|)|f | where Qim denotes the i-th row of Qm.

Then, for every p > 2
2−

√
δ
, p ≥ 2 and 1 < θ < d

d−2 , there exist constants µ0 > 0, 0 < β < 1 and
Kj, j = 1, 2, independent of n, m, such that

∥wn,m∥∞ ≤ K1(µ− µ0)
−β

p ∥Am∥pθ′

+K2(µ− µ0)
− 1

pθ ∥Am∥pθ, (10.2)

for all µ > µ0.
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We prove Proposition 10.1 in Section 16.

Set un,m be the classical solutions to elliptic equation(
µ−∆+ (bn + qm) · ∇

)
un,m = f, µ > 0. (10.3)

Proposition 10.2 (A priori Hölder continuity). For every µ > 0, {un,m} are locally Hölder
continuous uniformly in n, m.

That is, un,m are Hölder continuous, in every unit ball, with constants that do not depend on
n, m or the center of the ball. These constants are, however, allowed to depend on ∥f∥∞. We
prove Proposition 10.2 in Section 17.

Proposition 10.3 (Convergence). There exists µ0 > 0 such that for every µ ≥ µ0, for all
p > 2

2−
√
δ
, p ≥ 2, and any x ∈ Rd, there exists the limit

u := Lpρx- limn lim
m
un,m,

where ρx(y) := ρ(y − x), provided that constant σ in the definition of weight ρ (this is (2.1)) is
chosen sufficiently small (independently of x).

We prove Proposition 10.3 in Section 19.

Remark 10.1. The proof of Proposition 10.3 can be extended to show the existence of the limit
Lp- limn,m un,m, but at expense of imposing additional assumptions on drifts b or q, such as form-
bound δ of b being strictly less than 1, or the stream matrix Q of q having entries in VMO. See
Remark 19.2 in the end of the proof of Proposition 10.3.

Proposition 10.4 (Separation property/local maximum principle). Fix some 1 < θ < d
d−2 and

p > 2
2−

√
δ
, p ≥ 2. There exists constants K, µ0 > 0 and σ (in the definition of weight ρ)

independent of n, msuch that for all µ ≥ µ0, for every x ∈ Rd,

sup
B 1

2
(x)

|un,m| ≤ K
(
⟨|f |pθρx⟩⟩

1
pθ +

〈
|f |pθ

′
1B1(x)

〉 1
pθ′

)
. (10.4)

We prove Proposition 10.4 in Section 18.

We are in position to verify conditions of Trotter’s theorem for un,m = (µ+ Λn,m)−1f :

10.0.2. Proof of 1◦). This condition is a direct consequence of the fact that, by the classical theory,
e−tΛn,m are L∞ contractions.

10.0.3. Proof of 2◦). By 1◦), it suffices to verify the existence of the limit for all f belonging to a
countable dense subset of C∞

c . Proposition 10.2 and the Arzelà-Ascoli theorem yield: for every
r > 0, {un,m} is relatively compact in C(B̄r). Proposition 10.3 allows to further conclude that
{un,m} converges in C(B̄r), for every r > 0:

u ↾ B̄r = s-C(B̄r)- lim
n

lim
m
um,n ↾ B̄r. (10.5)

Remark 10.2. We need Proposition 10.3 that any two partial limits of un,m in C(B̄r) coincide.
The choice of the topology, and thus the weight, is secondary.
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We need to improve (10.5) to global uniform convergence:

u = s-C∞- lim
n

lim
m
un,m. (10.6)

To this end, we combine Proposition 10.4 and convergence (10.5). Namely, since f ∈ C∞
c and

weight ρx vanishes at infinity, it follows from (10.4) that solution un,m is small uniformly in n,
m when considered far away from the support of f . (Hence the name “separation property” for
(10.4).)

We have verified condition 2◦) of Trotter’s theorem.

Remark 10.3. Using Proposition 10.4, it is easy to obtain the preservation of probability, i.e. that

e−tΛ(bn,qm)(1− 1BR
)→ 0 as R ↑ ∞ uniformly in n, m.

From here it follows easily that e−tΛ1 = 1. (We use the fact that e−tΛ(bn,qm), e−tΛ(b,q) are
semigroups of integral operators, so the expressions e−tΛ(bn,qm)(1−1R), e−tΛ(b,q)1 are well-defined.)

10.0.4. Proof of 3◦). In view of 1◦), it suffices to verify 3◦) on a dense subset of C∞, e.g.C∞
c . Fix

g ∈ C∞
c . By the resolvent identity,

µ(µ+ Λn,m)−1g − µ(µ−∆)−1g = µ(µ+ Λn,m)−1(bn + qm) · ∇(µ−∆)−1g

= (µ+ Λn,m)−1(bn + qm) · µ(µ−∆)−1∇g.

Since µ(µ−∆)−1g → g uniformly on Rd as µ→∞, it suffices to show the convergence

∥(µ+ Λn,m)−1(bn + qm) · µ(µ−∆)−1∇g∥∞ → 0 as µ→∞ uniformly in n, m. (10.7)

To that end, we apply Proposition 10.1 to wn,m := (µ+ Λn,m)−1(bin + qim)f with f taken to be

f := µ(µ−∆)−1∇ig. (10.8)

Our goal is thus to prove

∥wn,m∥∞ → 0 as µ→∞ uniformly in n, m. (10.9)

If we can obtain bound

sup
µ≥1,m

∥Am∥pθ, sup
µ≥1,m

∥Am∥pθ′ <∞ for f given by (10.8), (10.10)

then the convergence (10.9) will follow thanks to the factors (µ − µ0)
−β

p , (µ − µ0)
− 1

pθ in (10.2).
The only slightly non-trivial aspect of proving (10.10) is that |Qim| can grow at infinity. But since
the entries of Qim are BMO functions, this growth cannot be arbitrary, see Lemma 10.2.

Proof of (10.10). So, from now on, let f be given by (10.8) where, recall, g has compact support
(we will need this when we apply Lemma 10.1). In what follows, for brevity, s = pθ or s = pθ′.
We have

∥|Qim||f |∥ss = ⟨|Qim|s|µ(µ−∆)−1∇ig|s⟩

(write 1 = (1 + |x|)−(d+ϵ0)s(1 + |x|)(d+ϵ0)s)

≤
〈
|Qim|sν(1 + |x|)−(d+ϵ0)sν

〉 1
ν
〈
(1 + |x|)(d+ϵ0)sν

′
|µ(µ−∆)−1∇ig|sν

′〉 1
ν′ , ν > 1.

(10.11)

We will need the following elementary lemma.
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Lemma 10.1. For every r > 0,

|(1 + |x|r)µ(µ−∆)−1∇ig(x)| ≤ cRµ(cµ−∆)−1|∇ig|(x), (10.12)

for some positive constants c, cR that depend only on d, r and R, i.e. the radius of a fixed ball
that contains the support of |∇ig|.

(For reader’s convenience, we prove Lemma 10.1 in Appendix A.) We will also need

Lemma 10.2 (see e.g. [Gr, Prop. 7.1.5]). For every f ∈ BMO(Rd), for all 1 ≤ r <∞,

⟨|f − (f)B1 |rρr⟩ ≤ Cd,r,ε∥f∥rBMO, (10.13)

where ρ = ρε is defined by (2.1). Hence

⟨|f |rρr⟩ ≤ C ′
d,r,ε

(
∥f∥rBMO + ∥f1B1∥rL1

)
<∞. (10.14)

By Lemma 10.1 (with r := d+ϵ0), we have pointwise estimate (1+|x|)(d+ϵ0)|µ(µ−∆)−1∇ig(x)| ≤
cRµ(cµ−∆)−1|∇ig|(x) with constants cR, c independent of µ ≥ 1, so we can estimate in the second
multiple in (10.11):〈

(1 + |x|)(d+ϵ0)sν
′
|µ(µ−∆)−1∇ig|sν

′〉
≤ C∥µ(cµ−∆)−1|∇ig|∥sν

′

sν′ .

In turn, by the contractivity of the heat semigroup in Lebesgue spaces, for all µ ≥ 1,

∥µ(cµ−∆)−1|∇ig|∥sν′ ≤ c−1∥∇ig∥sν′ .

Thus, the second second multiple in (10.11) can be estimated as follows: for all µ ≥ 1,〈
(1 + |x|)(d+ϵ0)sν

′
|µ(µ−∆)−1∇ig|sν

′〉
≤ C∥∇ig∥sν′ ,

where C depends on the support of g, but does not depend on µ.
On the other hand, regarding the first multiple in (10.11), we have by Lemma 10.2 (that is,

(10.14) with r = sν) after taking into account that the BMO semi-norms of Qim are uniformly in
m bounded,

sup
m

〈
|Qim|sν(1 + |x|)−(d+ϵ0)sν

〉
<∞.

We can thus conclude from (10.11):

sup
µ≥1,m

∥|Qim||f |∥s <∞.

In the same way, since ∇f = µ(µ−∆)−1∇i∇g and the entries of ∇g have compact supports,

sup
µ≥1,m

∥|Qim||∇f |∥s <∞.

The last two bounds yield (10.10). In view of the previous discussion, condition 3◦) of Trotter’s
theorem is thus verified.

Now, Trotter’s theorem applies and gives us assertion (i) of Theorem 5.1.

(ii) This is immediate from the existence of the limit in (i) and the fact that [b], [q] are closed
with respect to passing to a sub-sequence.

(iii) It suffices for us to replace Proposition 10.3 with the following: for all sufficiently large µ
and every f ∈ S, un = (µ+ Λ(bn, q))

−1f converge to the same limit:

un → u = (µ+ Λ(b, q))−1f in L2
ρ. (10.15)

The rest repeats the proof of assertion (i).



52 D.KINZEBULATOV AND R.VAFADAR

Proof of (10.15). Since b ∈ Fδ, δ < 1 and div q = 0 provide, via Cauchy-Schwarz inequality
and the compensatd compactness estimate, coercivity and boundedness of the quadratic form of
−∆+(b+q)·∇ in L2, it is readily seen that function u = (µ+Λ(b, q))−1f , f ∈ C∞∩L2, constructed
via approximation in (i), is a weak solution to elliptic equation (µ −∆ + (b + q) · ∇)u = f , i.e.
µ⟨u, φ⟩+ ⟨∇u,∇φ⟩+ ⟨∇u, bφ⟩+ ⟨∇u, qφ⟩ = ⟨f, φ⟩ for all φ ∈W 1,2.

Put hn := un − u. Our goal is to show convergence hn → 0 in L2
ρ. Notice that, in contrast

to the proof of assertion (i), we already have the limiting object u, which greatly simplifies the
analysis.

Step 1. Proposition 10.4 (“separation property”) extends to u, un and f ∈ S and yields: for a
fixed 1 < θ < d

d−2 there exist constants K and µ0 > 0 independent of n such that for all µ ≥ µ0,
for every x ∈ Rd,

sup
n≥1

sup
B 1

2
(x)

|hn| ≤ K
(
⟨|f |2θρx⟩⟩

1
2θ +

〈
|f |2θ

′
1B1(x)

〉 1
2θ′

)
,

provided constant σ in the definition of ρ is fixed sufficiently small. Since f ∈ S, it follows that
for every ε > 0 there exists sufficiently large R > 0 such that

sup
n

sup
x∈Rd\BR

|hn(x)| < ε. (10.16)

Step 2. The difference hn = un − u satisfies

µ⟨hn, φ⟩+ ⟨∇hn,∇φ⟩+ ⟨bn · ∇hn, φ⟩+ ⟨q · ∇hn, φ⟩ = ⟨(b− bn) · ∇u, φ⟩ for all φ ∈W 1,2.

Hence, taking φ = hnρ and repeating the proof of the energy inequality of Proposition 15.1(ii)
(take there s = 2, which is possible since now b, bn have form-bound δ < 1), with σ in the
definition of ρ fixed sufficiently small, we obtain

(µ− µ0)⟨|hn|2ρ⟩+ C1⟨|∇hn|2ρ⟩ ≤ ⟨(b− bn) · ∇u, hnρ⟩,

where C1 > 0 is independent of n. Thus, it suffices to show that ⟨(b − bn) · ∇u, hnρ⟩ → 0 as
n→∞.

Step 3. We represent

⟨(b− bn) · ∇u, hnρ⟩ = ⟨1Rd\BR
(b− bn) · ∇u, hnρ⟩+ ⟨1BR

(b− bn) · ∇u, hnρ⟩ (10.17)

=: I1 + I2 (10.18)

By Step 1 and ρ ≤ √ρ, term I1 can be estimated as follows: for every ε > 0, for all R = R(ε) > 0
sufficiently large

|I1| = |⟨1Rd\BR
(b− bn) · ∇u, hnρ⟩| ≤ Kb∥∇u∥2ε,

K2
b := 2 sup

n
⟨|bn|2ρ⟩ ∨ ⟨|b|2ρ⟩ <∞ by (15.15) (this is the place where we need weight ρ),

where ∥∇u∥2 <∞ by the energy inequality (Proposition 15.1(i)).
Let R be as above (some some small ε > 0). Let us deal with the second term ⟨1BR

(b −
bn) · ∇u, hnρ⟩ in (10.17) . Here we work over a compact set, so the weight ρ plays no role. By
the energy inequality of Proposition 15.1(i), supn ∥∇un∥2 < ∞, and thus supn ∥∇hn∥2 < ∞.
Therefore, by the Rellich-Kondrashov theorem, there is a subsequence of {hn} (without loss of
generality, {hn} itself) such that

hn ↾ BR → g in L2(BR) for some g ∈ (L2 ∩ L∞)(BR).
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(Here we have used a priori estimate ∥hn∥∞ ≤ 2µ−1∥f∥∞.) So,

|I2| = |⟨1BR
(b− bn) · ∇u, hnρ⟩| ≤ |⟨1BR

(b− bn) · ∇u, gρ⟩|+ |⟨1BR
(b− bn) · ∇u, (hn − g)ρ⟩|,

where

⟨1BR
(b− bn) · ∇u, gρ⟩ → 0 since 1BR

(∇u)gρ ∈ L2 and bn → b weakly in L2,

and

|⟨1BR
(b− bn) · ∇u, (hn − g)ρ⟩| ≤ ∥1BR

(b− bn)
√
ρ∥2∥(hn − g)∇u∥2 (we have used ρ ≤ 1)

≤ Kb∥1BR
∇u∥2+ε1∥1BR

(hn − g)∥ 2(2+ε1)
ε1

, ε1 > 0.

Next, we apply

Lemma 10.3. ∥∇u∥2+ε1 <∞ provided that ε1 > 0 is sufficiently small.

We prove Lemma 10.3, which is of interest on its own, in Section 20. Its proof uses Gehring-
Giaquinta-Modica’s lemma.

In turn,
∥1R(hn − g)∥ 2(2+ε1)

ε1

→ 0 as n→∞

follows by interpolating between 1R(hn−g)→ in L2 and supn ∥1R(hn−g)∥∞ ≤ 4µ−1∥f∥∞ <∞.
Combining the above estimate on I1 and the convergence I2 → 0 as n → ∞, we obtain

convergence (10.15), which ends the proof of assertion (iii).

(iv) Since e−tΛ(b,q) is a strongly continuous Feller semigroup on C∞, there exist probability
measures {Px}x∈Rd on the canonical space DT of càdlàg trajectories ω such that

e−tΛ(b,q)f(x) = EPx
[f(ωt)], f ∈ C∞

and, for every v ∈ D
(
Λ(b, q)

)
, the process

t 7→ v(ωt)− x+

ˆ t

0

Λ(b, q)v(ωs)ds

is a martingale with respect to Px, see e.g. [RY, Ch. VII, §1]. Since both e−tΛ(bn,qm), e−tΛ(b,q) are
strongly continuous Feller semigroups, the convergence of their finite-dimensional distributions,
provided by assertion (i), yields

Px = w-P(D)- lim
n

lim
m

Pn,mx ,

see e.g. [EK, Ch.4, Theorem 2.5]. Since C is closed in D and Pn,mx (C) = 1, it follows the weak
convergence that Px(C) = 1. Thus, probability measures {Px}x∈Rd are concentrated on C, and
we have

Px = w-P(C)- lim
n

lim
m

Pn,mx , (10.19)

as claimed.

(v) We argue as in [HZ]. Set Pν0 :=
´
Rd Pxν0(x)dx. Define in the same way Pn,mν0 . Then, in

view of (10.19),
Pν0 = w-P(C)- lim

n
lim
m

Pn,mν0 .
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By the Skorohod representation theorem, there exists a probability space F′ = {Ω′,F ′, {F ′
t}t≥0,P

′}
and continuous processes Xn,m

t , Xt defined on this space such that Pn,mν0 , Pν0 are the laws of Xn,m
t ,

Xt and
Xn,m
t (ω′)→ Xt(ω

′), (t ≥ 0, ω′ ∈ Ω′) (10.20)

(see e.g. [Bil, Ch. 1, Sect. 6]). In particular, P′(Xn,m
0 )−1,P′X−1

0 have density ν0.
Fix 1 ≤ i ≤ d. Our goal is to show that

lim
n1,n2

lim
m1,m2

E′
∣∣∣∣ˆ t

0

(
bin1

+ qim1
− (bin2

+ qim2
)
)
(Xr)dr

∣∣∣∣2 = 0. (10.21)

It suffices to show that

lim
n1,n2

lim
m1,m2

E′
∣∣∣∣ˆ t

0

(
bin1

+ qim1
− (bin2

+ qim2
)
)
(Xn,m

r )dr

∣∣∣∣2 = 0 uniformly in n, m. (10.22)

Indeed, having (10.22), we can appeal to (10.20) and the Dominated convergence theorem to show
that, for any fixed n1, m1, n2, m2,

lim
n

lim
m

E′
∣∣∣∣ˆ t

0

(
bin1

+ qim1
− (bin2

+ qim2
)
)
(Xn,m

r )dr −
ˆ t

0

(
bin1

+ qim1
− (bin2

+ qim2
)
)
(Xr)dr

∣∣∣∣2 = 0,

which then yields (10.21).
So, let us prove (10.22). Put for brevity F := bin1

+ qim1
− (bin2

+ qim2
), so (10.22) becomes

lim
n1,n2

lim
m1,m2

E′
∣∣∣∣ˆ t

0

F (Xn,m
r )dr

∣∣∣∣2 → 0. (10.23)

Let us rewrite the expression under the limit signs as follows. Let u be the classical solution to
the terminal-value problem(

∂s +∆− (bn + qm) · ∇
)
u(s) = −F, s < t, u(t, ·) = 0. (10.24)

Then

E′
∣∣∣∣ˆ t

0

F (Xn,m
r )dr

∣∣∣∣2 = 2E′
ˆ t

0

F (Xn,m
s )

ˆ t

s

F (Xn,m
r )drds

= 2E′
ˆ t

0

F (Xn,m
s )E′

[ˆ t

s

F (Xn,m
r )dr | F ′

s

]
ds

= 2E′
ˆ t

0

F (Xn,m
s )u(s,Xn,m

s )ds = 2

ˆ t

0

⟨Fu, ν⟩ds,

where ν is the probability density of Xn,m, i.e. solution to Cauchy problem for the Fokker-Planck
equation

∂tν(t)−∆ν(t)− div
(
(bn + qm)ν(t)

)
= 0, t > 0, ν(0, ·) = ν0. (10.25)

Now it is seen that convergence (10.23) will follow once we prove the next lemma.

Lemma 10.4.

I :=

ˆ T

0

⟨(bin1
− bin2

)u, ν⟩ds→ 0, J :=

ˆ T

0

⟨(qim1
− qim2

)u, ν⟩ds→ 0

as n1, n2,m1,m2 →∞ uniformly in n, m.
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Proof. Below we will use the following bound: provided that r > 1 is chosen sufficiently close to
1, we have

sup
n,m,n1,n2,m1,m2

[ˆ T

0

⟨|∇u|2⟩ds,
ˆ T

0

⟨u4⟩ds,
ˆ T

0

⟨ν2r⟩ds,
ˆ T

0

⟨|∇ν|2⟩ds
]
<∞. (10.26)

For the last two terms this bound follows right away from Corollary 15.2 with s = 2r, s = 2,
respectively (since δ can be close to 1, s = 2r in Corollary 15.2 must be close to 2, hence the
condition that r must be close to 1). For the first two terms this bound is obtained as follows.
Since bn, qm have supports in the same ball BR independent of n, m, we can rewrite F as

F =
[
bin1

+ qim1
− (bin2

+ qim2
)
]
f, f ∈ C∞

c is identically 1 on BR.

We now invoke the energy inequality of Proposition 15.2(i) for s = 2, s = 4, and then estimate
⟨F, u|u|s−2⟩ in exactly the same way as in Step 1 of the proof of Proposition 10.1. (In fact, strictly
speaking, in F there we have bin, qim instead of bin1

− bin2
and qim1

− qim2
, but what matters in the

proof is that the form-bound of bin1
− bin2

can be chosen independently of n1, n2, and that the
BMO semi-norm of Qim1

− Qim2
is bounded from above by a constant independent of m1, m2,

which is obviously true.) From here the bound on the first two terms in (10.26) follows.
Armed with (10.26), we estimate

I ≤
(ˆ T

0

∥bin1
− bin2

∥22ds
) 1

2
(ˆ T

0

∥u∥2r
′

2r′ds

) 1
2r′
(ˆ T

0

∥ν∥2r2rds
) 1

2r

,

with 1 < r <∞ selected close to 1. The first term tends to 0 as n1, n2 →∞, while the other two
terms are uniformly (in n,m, n1, n2,m1,m2) bounded by (10.26). In turn,

J = −
ˆ T

0

⟨(Qim1
−Qim2

), (∇u)ν⟩ds−
ˆ T

0

⟨(Qim1
−Qim2

), u∇ν⟩ds =: J1 + J2,

where the stream matrices Qm· can and will be chosen to satisfy

|Qm· | ≤ C(1 + |x|)−d+2 ∀ |x| ≥ 2R≫ 1, (10.27)

where R is chosen so that sprt qm· ⊂ BR(0) (Appendix B). The constant C does not depend on
m1, m2. We have

|J1|2 ≤
ˆ T

0

⟨|∇u|2⟩ds
(
T ⟨|Qim1

−Qim2
|2r

′
⟩
) 1

r′
(ˆ T

0

⟨ν2r⟩ds
) 1

r

. (10.28)

The first and the last factors are uniformly bounded in view of (10.26). Therefore, since |Qim1
−

Qim2
| → 0, in particular, in L2r′

loc , we obtain

⟨|Qim1
−Qim2

|2r
′
⟩ → 0 as m1,m2 →∞. (10.29)

Next,

|J2|2 ≤
(
T ⟨|Qim1

−Qim2
|4⟩
) 1

2
(ˆ T

0

⟨u4⟩ds
) 1

2
ˆ T

0

⟨|∇ν|2⟩ds,

where, by the same argument as above, ⟨|Qim1
−Qim2

|4⟩ → 0 as m1,m2 → ∞ (note that, taking
into account the above estimate on the polynomial rate of vanishing of Qm· at infinity, we have
4(d − 2) > d even if d = 3, so the integrals are finite). The other two factors are uniformly
bounded. This ends the proof of Lemma 10.4. □
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Remark 10.4. It is not difficult to remove the compact support assumption on b and q by
inserting identity ρρ−1 = 1 in the definitions of I and J , i.e.

I =

ˆ T

0

⟨(bin1
− bin2

)uρ, νρ−1⟩ds, J =

ˆ T

0

⟨(qim1
− qim2

)uρ, νρ−1⟩ds

and then arguing as above, but using the global weighted L2 convergence result of Lemma 15.1
and replacing the energy inequalities of Section 15 (i.e. Proposition 15.2 and Corollary 15.2) by
their weighted counterparts with the weights ρ and ρ−1 (the last weight is not discussed in Section
15, but the arguments do not change since |∇ρ−1| is majorated by ρ−1, see Section 2). This comes
at expense of imposing condition ⟨ν2rρ−α⟩ <∞ for 1 < r < 1√

δ
and some α > 0.

(vi) The proof of the dispersion estimates uses Nash’s argument, see e.g. [KS3, proof of Theorem
4.2]. The construction of the semigroup follows closely [KS3, proof of Theorem 4.2]. In fact, we
basically construct this semigroup in the proof of Proposition 10.3. The proof of the uniqueness
of the weak solution follows the classical Lions’s argument and the compensated compactness
estimate (Proposition 2.1), see [QX] for details.

(vii) This is an immediate consequence of Proposition 10.4.

11. Proof of Theorem 5.2

For reader’s convenience, we will prove assertion (vii). Put

Rnµf(x) := EPx(b̃n)

ˆ ∞

0

e−µsf(ωs)ds

(
= (µ+ Λ(b̃n))

−1f(x)

)
, f ∈ C∞

c ,

RQµ f(x) := EQx

ˆ ∞

0

e−µsf(ωs)ds, µ > 0.

It suffices for us to show that (µ+Λ(b))−1f(x) = RQµ f(x) for all x ∈ Rd and all µ > 0 sufficiently
large, where Λ(b) is the Feller realization of −∆+ b · ∇ in C∞ constructed in (i). This will imply
that {Qx}x∈Rd = {Px}x∈Rd .

Step 1:
Rnµf(x)→ RQµ f(x) as n→∞ ∀x ∈ Rd,

as follows right away from Qx = w-P(C)- limn Px(b̃n).

Step 2:
∥RQµ f∥2 ⩽ (µ− µ0)

−1∥f∥2 for all µ > µ0,
for some µ0 independent of n. Indeed, by the elliptic energy inequality (see e.g. Proposition 15.1),
∥Rnµf∥2 ⩽ (µ− µ0)

−1∥f∥2 for all n. Now 2) follows from 1) by a weak compactness argument in
L2.

By Step 2, operators RQµ admits unique extensions by continuity to L2, which we denote by
RQµ,2.

On the other hand, operators (µ + Λ(b))−1|C∞
c ∩L2 are bounded on L2 and, in fact, constitute

the resolvent Λ2 of the generator of a strongly continuous semigroup in L2, i.e.

(µ+ Λ2(b))
−1 :=

[
(µ+ Λ(b))−1|C∞

c ∩L2

]clos
L2→L2

.

One can also construct Λ2(b) directly (using e.g. quadratic forms), see [KS3].
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Step 3:
∥b · ∇(µ−∆)−1∥2→2 ⩽ δ,

which follows right away from b ∈ Fδ and ∥∇(−∆)−
1
2 ∥2→2 = 1.

Step 4:
(µ+ Λ2(b))

−1f = (µ−∆)−1
(
1 + b · ∇(µ−∆)−1

)−1
f in L2. (11.1)

Indeed, since by our assumptions we have δ < 1, in view of 3) the right-hand side of the previous
formula is well defined. Now, we have to appeal for a moment to a “good” approximation {bn} ∈ [b],
i.e. an approximation that actually does converge to b (recall that we do not require from {b̃n}
any kind of convergence to b).

The sought identity (11.1) holds for every bn. This follows by rearranging the usual Neumann
series representation for (µ+ Λ2(bn))

−1 while taking into account the estimate of Step 3. So,

(µ+ Λ2(bn))
−1f = (µ−∆)−1

(
1 + bn · ∇(µ−∆)−1

)−1
f.

It remains to pass to the limit in n. In the left-hand side one has (µ+Λ2(bn))
−1f → (µ+Λ2(b))

−1f
in L2 (see [KS2], but it is not difficult to prove this directly, see e.g. the proof of Proposition 10.3;
here we need a simpler version of this in L2). In the right-hand side the denominator of the
geometric series bn · ∇(µ −∆)−1g → b · ∇(µ −∆)−1 in L2 for every g ∈ L2. This is immediate
on g ∈ C∞

c , so it remains to apply the estimate of Step 3. So, we can pass to the limit in the
right-hand side, arriving at the identity (11.1).

Step 5:
(µ+ Λ(b))−1f = RQµ f a.e. on Rd.

Indeed, since, by our assumptions, Qx is a weak solution of the SDE (1.1), we have by Itô’s
formula

(µ−∆)−1h = RQµ [
(
1 + b · ∇(µ−∆)−1

)
h], h ∈ C∞

c .

Since 1 + b · ∇(µ−∆)−1 ∈ B(L2) by Step 3, we have, in view of Step 2,

(µ−∆)−1g = RQµ,2[
(
1 + b · ∇(µ−∆)−1

)
g], g ∈ L2.

Take g =
(
1+b·∇(µ−∆)−1

)−1
f , f ∈ C∞

c , which is possible by Step 3 and δ < 1. Then, by Step 4,
(µ+Λ2(b))

−1f = RQµ,2f . By the consistency property (µ+Λ(b))−1|C∞
c ∩L2 = (µ+Λ2(b))

−1|C∞
c ∩L2

and the result follows.
Step 6: Fix some r > 2∨ (d− 2) in the interval [2, 2√

δ
[ (here we use our hypothesis on δ, which

must be sufficiently small so that r can be large enough). Since Rnµf = (µ+Λ(b̃n))
−1f , we obtain

by assertion (xii) that for all µ > µ0

∥∇Rnµf∥ rd
d−2

⩽ K2(µ− µ0)
− 1

2+
1
r ∥f∥r.

By a weak compactness argument in Lrj , in view of Step 1, we have ∇RQµ f ∈ [Lrj ]d, and there is
a subsequence of {Rnµf} (without loss of generality, it is {Rnµf} itself) such that

∇Rnµf
w−→ ∇RQµ f in [Lrj ]d.

By Mazur’s lemma, there is a sequence of convex combinations of the elements of {∇Rnµf}∞n=1

that converges to ∇RQµ f strongly in [Lrj ]d, i.e.∑
α

cα∇Rnα
µ f

s−→ ∇RQµ f in [Lrj ]d.
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Now, in view of the latter, Step 1 and the Sobolev embedding theorem, we have
∑
α cαR

nα
µ f

s−→
RQµ f in C∞. Therefore, by Step 5, (µ+Λ(b))−1f(x) = RQµ f(x) for all x ∈ Rd, f ∈ C∞

c , as claimed.

12. Proof of Theorem 6.1

(i) We modify the proof of Theorem 5.1, i.e. we verify conditions of the Trotter’s approximation
theorem, but now for Feller generators

Λ(an, bn, qm) := −an · ∇2 + (bn + qm) · ∇, D
(
Λ(an, bn, qm)

)
= (1−∆)−1C∞.

Condition 1◦) of Trotter’s theorem is obvious.
Let us verify conditions 2◦) and 3◦). To this end, we note that Propositions 10.2, 10.4 and 10.1,

i.e. a priori Hölder continuity of solutions, separation and embedding properties, are still valid for
operators Λ(am, bn, qm) (in fact, under more general condition δ < 4ξ2) since we can put these
operators in divergence form

Λ(an, bn, qm) = −∇ · an · ∇+ (b̃n + qm) · ∇, b̃n = ∇an + bn ∈ Fδ,

so De Giorgi’s method applies.

Remark 12.1. Condition δ < 4ξ2 is seen from the following calculation, which we have to repeat
several times (also, with the cutoff function η) when extending Propositions 10.2, 10.4 and 10.1
to include matrix fields an. We mutiply elliptic equation (µ−∇ · an · ∇+ (b̃n + qm) · ∇)u = 0 by
up−1 ≥ 0 and integrate by parts, obtaining, after taking into accout div qm = 0,

µ⟨up⟩+ 4(p− 1)

p2
⟨an · ∇u

p
2 ,∇u

p
2 ⟩+ 2

p
⟨b̃n · ∇u

p
2 , u

p
2 ⟩ = 0.

Since an ∈ Hξ,

µ⟨up⟩+ 4(p− 1)

p2
ξ⟨|∇u

p
2 |2⟩+ 2

p
⟨b̃n · ∇u

p
2 , u

p
2 ⟩ = 0,

Applying the quadratic inequality in the last term, we arrive at

µ⟨up⟩+ 4(p− 1)

p2
ξ⟨|∇u

p
2 |2⟩ ≤ 2

(
α⟨|b̃n|2, vp⟩+

1

4α
⟨|∇v

p
2 |2⟩

)
.

Now, using b̃n ∈ Fδ and selecting α = 1
2
√
δ
, we obtain

µ⟨up⟩+
[
4(p− 1)

p2
ξ − 2

p

√
δ

]
⟨|∇u

p
2 |2⟩ ≤ 0.

So, δ < 4ξ2 is exactly the condition that ensures that 4(p−1)
p2 ξ − 2

p

√
δ > 0 for some finite p ≥ 2

and hence gives us an energy inequality; that is, we need p > 2
2−ξ−1

√
δ
.

Proposition 10.3 is replaced by a simpler convergence result

u := L2
loc- lim

n
lim
m
un,m, (12.1)

where un,m = (µ + Λ(an, bn, qm))−1f , f ∈ C∞
c . (As is explained in the proof of Theorem 5.1(i),

we need convergence in some topology to establish the approximation uniqueness.) Let us prove
(12.1). Due to our more restrictive assumption δ < ξ2 we can work in L2 rather than Lp. By the
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Steps 1-3 in the proof of Proposition 10.3, which extend easily to an for each fixed n, the limit
un := L2- limm un,m exists and satisfies the identity

µ⟨un, φ⟩ − ⟨an · ∇un,∇φ⟩+ ⟨(∇an + bn + q) · ∇un, φ⟩ = ⟨f, φ⟩, φ ∈ C∞
c (12.2)

with µ independent of n. The standard energy inequality argument (cf. Section 15) and the
compensated compactness estimate of Proposition 2.1 allow us to extend (12.2) to test functions
φ ∈ W 1,2, i.e.un is the standard weak solution to the elliptic equation (µ−∇ · an · ∇+ (∇an +
bn + q) · ∇)un = f in L2. Now, the convergence ∇an + bn → ∇a+ b in L2

loc and the convergence
an → a a.e. on Rd, applied in the standard weak compactness argument in L2, give us, via the
uniqueness of the weak solution in L2, the sought convergence un → u in L2

loc, where u satisfies
(12.2) with a, b instead of an, bn, moreover, this identity extends in the same way to φ ∈ W 1,2,
so u is the standard weak solution (µ−∇ · a · ∇+(∇a+ b+ q) · ∇)u = f in L2. In the case q = 0,
this is essentially how the divergence form operator −∇ · a · ∇ + b · ∇ with form-bounded b was
treated in [KS3, Theorem 4.3]

Now, armed with the above analogues of Propositions 10.2, 10.3 and 10.1 for Λ(am, bn, qm), we
verify condition 2◦) of Trotter’s theorem in the same way as in the proof of Theorem 5.1.

Condition 3◦) requires a comment. Fix g ∈ C∞
c . By the resolvent identity,

µ(µ+ Λ(am, bn, qm))−1g − µ(µ−∆)−1g = µ(µ+ Λ(am, bn, qm))−1(am − I) · ∇2(µ−∆)−1g

+ µ(µ+ Λ(am, bn, qm))−1(bn + qm) · ∇(µ−∆)−1g.

Since µ(µ−∆)−1g → g uniformly on Rd as µ→∞, it suffices to show convergence

∥(µ+ Λ(am, bn, qm))−1(am − I) · µ(µ−∆)−1∇2g∥∞ → 0 (12.3)

and

∥(µ+ Λ(am, bn, qm))−1(bn + qm) · µ(µ−∆)−1∇g∥∞ → 0 (12.4)
as µ→∞ uniformly in n, m.

To prove (12.4) we argue as in the proof of Theorem 5.1(i) and apply the discussed above analogue
of Proposition 10.1 to wn,m := (µ + Λ(am, bn, qm))−1(bin + qim)f with f chosen as f := µ(µ −
∆)−1∇ig. (Let us note in passing that Proposition 10.1 is valid for bin and qin in the RHS of the
equation for wn,m replaced by the i-th components of general vector fields in Fν , ν < ∞, and
BMO−1, i.e. the proof of Proposition 10.1 does not exploit any cancellations between the RHS of
the equation and the drift term.)

The proof of (12.3) is even easier. Indeed, we can apply a straightforward analogue of Propo-
sition 10.1 to wn,m := (µ+Λ(am, bn, qm))−1f with bounded f chosen as f := ((am)ij − δij)µ(µ−
∆)−1∇i∇jg, use the uniform in m boundedness of am on Rd and then argue as in the proof of
Theorem 5.1(i).

(iii) The proof of the relaxed approximation uniqueness basically does not change. Since
δ < ξ2, we continue to work in the standard setting of weak solutions in L2. We get an extra
term in Step 2: the difference hn = un − u satisfies

µ⟨hn, φ⟩+ ⟨an ·∇hn,∇φ⟩+ ⟨bn ·∇hn, φ⟩+ ⟨q ·∇hn, φ⟩ = ⟨∇· (am−a) ·∇u,∇φ⟩+ ⟨(b− bn) ·∇u, φ⟩
for all φ ∈W 1,2, for all µ greater than some µ0 independent of n. Taking φ = hnρ and repeating
the proof of the energy inequality of Proposition 15.1(ii) for s = 2, we obtain

(µ− µ0)⟨|hn|2ρ⟩+ C1⟨|∇hn|2ρ⟩ ≤ ⟨∇ · (an − a) · ∇u,∇(hnρ)⟩+ ⟨(b− bn) · ∇u, hnρ⟩,
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where the last term tends to zero as n → ∞ by the argument in the proof of Theorem 5.1(ii).
The term ⟨∇ · (an − a) · ∇u, (∇hn)ρ+ hn∇ρ⟩ → 0 tends to zero by an even simpler argument:

|⟨∇ · (an − a) · ∇u, (∇hn)ρ⟩| ≤ ∥|an − a||∇u|
√
ρ∥2∥(∇hn)

√
ρ∥2,

where the second multiple is bounded uniformly in n due to the energy inequality, and the first
multiple tends to 0 by the Dominated convergence theorem (since |∇u|√ρ ∈ L2, also by the
energy inequality). (The proof that ⟨∇ · (an − a) · ∇u, hn∇ρ⟩ → 0 as n→∞ is easier since |∇ρ|
is majorated by ρ.)

(iv) The proof repeats the proof of Theorem 5.1(iv).

(v) We obtain in the same way as in the proof of Theorem 5.1(v)

Xn,m
t (ω′)→ Xt(ω

′), t ≥ 0, ω′ ∈ Ω, (12.5)

where

Xn,m
t = X0 −

ˆ t

0

(bn(X
n,m
s ) + qm(Xn,m

s ))ds+

ˆ t

0

σn(X
n,m
s )dBs, n,m = 1, 2, . . .

We only need to supplement the proof of Theorem 5.1(v) by the convergenceˆ t

0

σijn (X
n,m
s )dBs →

ˆ t

0

σij(Xs)dBs in L2(Ω′), for all t ≥ 0

Form now on, we drop index ij to lighten notations. Since an → a a.e. on Rd, we have convergence
of their square roots: σn → σ a.e. By Itô’s isometry, our task is to show that

E′
ˆ t

0

|σn(Xn,m
s )− σ(Xs)|2ds→ 0 as n,m→∞.

In turn, this convergence follows from:

E′
ˆ t

0

|σn(Xn0,m0
s )− σ(Xn0,m0

s )|2ds→ 0 as n→∞ uniformly in n0, m0 ≥ 1,

and

E′
ˆ t

0

|σ(Xn,m
s )− σ(Xs)|2ds→ 0 as n,m→∞.

The latter is immediate from (12.5) via the Dominated convergence theorem, and the former
follows right away from the strong Feller property of the resolvents (assertion (vii)):

E′
ˆ t

0

|σn(Xn0,m0
s )− σ(Xn0,m0

s )|2ds =
ˆ
Rd

ν0(dx)EPn0,m0
x

ˆ t

0

|σn(ωs)− σ(ωs)|2ds

=

ˆ
Rd

ˆ t

0

(
e−sΛ(an0

,bn0
,qm0

)|σn − σ|2
)
(x)dsν0(x)dx

=

ˆ
Rd

ˆ t

0

eµse−µs
(
e−sΛ|σn − σ|2

)
(x)dsν0(x)dx

≤ eµt
ˆ
Rd

ˆ ∞

0

e−µs
(
e−sΛ|σn − σ|2

)
(x)dsν0(x)dx.

The last term is, modulo eµt, which is bounded anyway, isˆ
Rd

(µ− Λ)−1|σn − σ|2(x)ν0(x)dx ≤ C
ˆ
Rd\BR

ν0(x)dx+ ∥1BR
(µ− Λ))−1|σn − σ|2∥∞,
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where C = supn ∥σn∥∞ + ∥σ∥∞. The first integral can be made as small as needed by selecting
R sufficiently large. To estimate the second term, we invoke the strong Feller property (vii):

∥1BR
(µ− Λ))−1|σn − σ|2∥∞

≤ K sup
x∈ 1

2Zd∩BR

[
⟨|σn − σ|2pθρx⟩

1
pθ + ⟨|σn − σ|2pθ

′
ρx⟩

1
pθ′

]
.

It remains to apply the Dominated convergence theorem in n. (Strictly speaking, we are applying
Feller resolvent to discontinuous functions, but since the former is a family of integral operators,
a standard limiting argument addresses this.)

13. Proof of Theorem 8.1

The proof of Theorem 8.1 follows closely the proof of Theorem 5.1, with only one calculation
done differently. We stay at the level of a priori estimates, so b, q are additionally bounded and
smooth. Assuming for simplicitly that cδ = cδ+ = 0 in the conditions on b, (div b)+, we consider
Cauchy problem (∂t−∆+(b+ q) · ∇)v = 0, v|t=0 = v0 ∈ C∞

c (without loss of generality, v0 ≥ 0),
multiply the parabolic equation by vp−1 and integrate by parts:

1

p
⟨∂tvp⟩+

4(p− 1)

p2
⟨|∇v

p
2 |2⟩+ 2

p
⟨b · ∇v

p
2 , v

p
2 ⟩ = 0,

where we have used div q = 0. Thus,

∂t⟨vp⟩+
4(p− 1)

p
⟨|∇v

p
2 |2⟩ = −2⟨b · ∇v

p
2 , v

p
2 ⟩.

In turn, −⟨b ·∇v
p
2 , v

p
2 ⟩ = ⟨bv

p
2 ,∇v

p
2 ⟩+ ⟨div b, vp⟩, hence ⟨∂tvp⟩+ 4(p−1)

p ⟨|∇v
p
2 |2⟩ = ⟨div b, vp⟩, and

so

⟨∂tvp⟩+
4(p− 1)

p
⟨|∇v

p
2 |2⟩ ≤ ⟨(div b)+, vp⟩,

Now, applying div b ∈ Fδ+ , we obtain energy inequality

⟨∂tvp⟩+
(
4(p− 1)

p
− δ+

)
⟨|∇v

p
2 |2⟩ ≤ 0

with 4(p−1)
p − δ+ > 0 provided that p > 4

4−δ+ .

14. Proof of Theorem 8.3(iii)

(ii) We repeat the proof of Theorem 5.1(i):
Proposition 10.2 (“A priori Hölder continuity”) is replaced by [K6, Theorem 5].
Proposition 10.3 (“Convergence”) is replaced by [K6, Theorem 3(v)].
Proposition 10.4 (“Separation property”) is replaced by [K6, Propositions 5 and 6] in the proof

of [K6, Theorem 5].
Proposition 10.1 (“Embedding property”) is replaced by [K6, Theorem 5].
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15. Auxiliary results used in the proofs of Propositions 10.2-10.1

15.1. Energy inequalities. In the next two propositions we assume that{
b ∈ Fδ with δ < 4,

q ∈ BMO−1 (15.1)

(that is, we are in the assumptions of Theorem 5.1), and fix some {bn} ∈ [b], {qm} ∈ [q].

Proposition 15.1. Assume that hypothesis (15.1) holds. Let u = un,m denote the classical
solution of the elliptic equation(

µ−∆+ (bn + qm) · ∇
)
u = f, µ ≥ 0, f ∈ C∞

c . (15.2)

Fix some s > 2
2−

√
δ
, s ≥ 2. Then the following are true:

(i) There exist positive constants µ0, C1 independent of n, m such that

(µ− µ0)⟨|u|s⟩+ C1⟨|∇|u|
s
2 |2⟩ ≤ ⟨f, u|u|s−2⟩ (15.3)

for all µ ≥ µ0.

(ii) [Weighted variant] Provided that constant σ > 0 in weight ρ(y) = (1+σ|y|2)−
d+ϵ0

2 is fixed
sufficiently small, there exist positive constants µ0, C1 independent of n, m such that, for
all x ∈ Rd,

(µ− µ0)⟨|u|sρx⟩+ C1⟨|∇|u|
s
2 |2ρx⟩ ≤ ⟨f, u|u|s−2ρx⟩, ρx(y) = ρ(x− y), (15.4)

for all µ ≥ µ0.

Remark 15.1. We have added condition s ≥ 2 to save ourselves some efforts since to cover the
values of the form-bound δ close to 4 we need to select s large anyway. But, generally speaking,
s ∈]1, 2[ does not pose a substantial difficulty, see e.g. [KS3, proof of Theorem 4.2].

In the proof of assertion (ii) we will need to control a term resulting from the interaction
between the weight ρ and the stream matrix Q of drift q. This will be done using Proposition 2.2
(a compensated compactness type estimate) and Lemma 2.1 on BMO(Rd) multipliers.

Proof of Proposition 15.1. We will only prove (ii). We write for brevity b = bn, q = qm. In the
proof we will need estimates

|∇ρx(y)| ≤
d+ ϵ0

2

2σ|x− y|
1 + σ|x− y|2

ρx(y) ≤
d+ ϵ0

2

√
σρx(y). (15.5)

We multiply equation (15.2) by u|u|s−2ρx and integrate by parts:

µ⟨|u|s⟩+ 4(s− 1)

s2
⟨|∇|u| s2 |2ρx⟩+

2

s
⟨∇|u| s2 , |u| s2∇ρx⟩

+
2

s
⟨b · ∇|u| 2s , |u| 2s , ρx⟩+

2

s
⟨q · ∇|u| s2 , |u| ss ρx⟩ = ⟨f, u|u|s−2ρx⟩,
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where, taking into account anti-symmetry of the stream matrix Q of q,

2

s
|⟨q · ∇|u| s2 , |u| ss ρx⟩ = −

2

s
⟨Q · ∇|u| s2 , |u| s2∇ρx⟩

=
2

s
⟨Q · ∇(|u| s2√ρx), |u|

s
2
√
ρx
∇ρx
ρx
⟩

(we apply Proposition 2.2))

≤ 2C

s
∥∇ρx
ρx
·Q∥BMO∥∇(|u|

s
2
√
ρx)∥2∥u

s
2
√
ρx∥2,

Applying Lemma 2.1 to ∇iρ(y)
ρ(y) = 2σyi

1+σ|y|2 , we obtain

K := sup
x∈Rd

∥∇ρx
ρx
·Q∥BMO <∞,

so we can conclude the previous estimate as

2

s
|⟨q · ∇|u| s2 , |u| ss ρx⟩ ≤

2CK

s

(
⟨|∇|u| s2√ρx|2⟩+ ⟨|u|sρx⟩

) 1
2 ⟨|u|sρx⟩

1
2 , (15.6)

and then use Cauchy-Schwarz and the second inequality in (15.5) to estimate ⟨|∇|u| s2√ρx|2⟩ ≤
(1 + ε1)⟨|∇|u|

s
2 |2ρx⟩ + Cσ(1 + ε−1

1 )⟨|u|sρx⟩. Here we can fix any positive ε1 because, going back
to (15.6), in the end we will apply Cauchy-Schwart inequality which will allow us to make the
constant in front of the term ⟨|∇|u| s2 |2ρx⟩ in the resulting upper bound on 2

s |⟨q ·∇|u|
s
2 , |u| ss ρx⟩ as

small as we want.
Next,

2

s
|⟨b · ∇|u| s2 , |u| 2s ρx⟩| ≤

2

s

(
β⟨|b|2, |u|sρx⟩+

1

4β
⟨|∇|u| s2 |2ρx⟩

)
(15.7)

(use b ∈ Fδ)

≤ 2

s

(
β(δ∥∇(|u| s2√ρx)∥22 + cδ⟨|u|sρx⟩) +

1

4β
⟨|∇|u| s2 |2ρx⟩

)
.

Take β = 1
2
√
δ

and then apply inequality in the end of the previous paragraph, but with ε1 chosen
small.

Applying the last inequality in (15.5), we can replace in the previous inequalities all occurrences
of |∇ρx| by C

√
σρx. That way, we arrive at the inequality (15.4) with constant

C1 =
4(s− 1)

s2
− 2

s

√
δ − (constant terms proportional to

√
σ and ε1),

where µ0 is given in terms of cδ, CKs and ε−1
1 . Since 4(s−1)

s2 − 2
s

√
δ > 0 (⇔ s > 2

2−
√
δ
) by our choice

of s, we can fix σ and ε1 sufficiently small so that C1 > 0. This ends the proof of Proposition
15.1. □

Corollary 15.1. In the assumptions and notations of Proposition 15.1, we also have
(i) There exist positive constants µ0, C1, C2 independent of n, m such that

(µ− µ0)⟨|u|s⟩+ C1⟨|∇|u|
s
2 |2⟩ ≤ C2⟨|f |s⟩ (15.8)

for all µ ≥ µ0.
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(ii) [Weighted variant] Provided that constant σ in the definition of weight ρ is fixed sufficiently
small, there exist positive constants µ0, C1, C2 independent of n, m such that, for all
x ∈ Rd,

(µ− µ0)⟨|u|sρx⟩+ C1⟨|∇|u|
s
2 |2ρx⟩ ≤ C2⟨|f |sρx⟩ (15.9)

for all µ ≥ µ0.

Proof. In the above proof of Proposition 15.1 we can take one step further and apply Young’s
inequality in order to estimate

⟨f, u|u|s−2ρx⟩ ≤
εs

s
⟨|u|sρx⟩+

1

εs′s′
⟨|f |sρx⟩.

□

The previous energy inequalities have their parabolic counterparts:

Proposition 15.2. Assume that hypothesis (15.1) is satisfied. Let v = vn,m be the classical
solution of Cauchy problem(

µ+ ∂t −∆+ (bn + qm) · ∇
)
v = 0, v(0) = f ∈ C∞

c , µ ≥ 0. (15.10)

Fix some s > 2
2−

√
δ
, s ≥ 2. Then there exists µ0 ≥ 0 independent of n, m such that for all µ ≥ µ0

the following are true:
(i)

(µ− µ0)

ˆ t

0

⟨|v|s⟩+ 1

s
sup
r∈[0,t]

⟨|v(r)|s⟩+ C1

ˆ t

0

⟨|∇|v| s2 |2⟩ ≤ 2

s
⟨|f |s⟩ (15.11)

for constant C1 > 0 independent of n, m.
(ii) [Weighted variant] Provided that σ is the definition of weight ρ is chosen sufficiently small,

we have

(µ− µ0)

ˆ t

0

⟨|v|sρx⟩+
1

s
sup
r∈[0,t]

⟨|v(r)|sρx⟩+ C1

ˆ t

0

⟨|∇|v| s2 |2ρx⟩ ≤
2

s
⟨|f |sρx⟩ (15.12)

for constant C1 > 0 independent of n, m and x ∈ Rd.

Proof of Proposition 15.2. Let us prove (ii). We multiply the parabolic equation in (15.10) by
v|v|s−2ρx and integrate over [0, r]×Rd. All the terms in the resulting integral identity, except the
one containing ∂tv, are dealt with as in the proof of the previous proposition. In turn, the term
containing ∂tv is evaluated as follows:ˆ r

0

⟨∂tv, v|v|s−2ρx⟩ =
1

s

ˆ r

0

⟨∂t|v|sρx⟩ =
1

s

(
⟨|v(r)|sρx⟩ −

1

s
⟨|f |sρx⟩

)
.

This gives us

(µ− µ0)

ˆ r

0

⟨|v|sρx⟩+
1

s
⟨|v(r)|sρx⟩+ C1

ˆ r

0

⟨|∇|v| s2 |2ρx⟩ ≤
1

s
⟨|f |sρx⟩. (15.13)

for appropriate µ0 ≥ 0 and C > 0, both independent of n, m. Let µ ≥ µ0. We have, in particular,
1

s
⟨|v(r)|sρx⟩ ≤

1

s
⟨|f |sρx⟩, (µ− µ0)

ˆ r

0

⟨|v|sρx⟩+ C1

ˆ r

0

⟨|∇|v| s2 |2ρx⟩ ≤
1

s
⟨|f |sρx⟩.

We can pass to the supremum in r in both inequalities since their right-hand side does not depend
on r. Adding up the resulting inequalities, we arrive at (15.12). □
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In the proof of assertion (v) of Theorem 5.1 we use energy inequality for the Fokker-Planck
equation:

Corollary 15.2. Assume that hypothesis (15.1) is satisfied with δ < 1. Let ν = νn,m denote the
classical solution to Cauchy problem

µν + ∂tν −∆ν + div
[
(bn + qm)ν

]
= 0, ν(0) = ν0 ∈ C∞

c , µ ≥ 0. (15.14)

Fix some 2 ≤ s < 2√
δ
. Then there exist positive constants µ0, C1 independent of n, m such that

(µ− µ0)

ˆ t

0

⟨|ν|s⟩+ 1

s
sup
r∈[0,t]

⟨|ν(r)|s⟩+ C1

ˆ t

0

⟨|∇|ν| s2 |2⟩ ≤ 2

s
⟨|ν0|s⟩

for all µ ≥ µ0.

One also has a straightforward weighted counterpart of this inequality as in assertion (ii) of
Proposition 15.2.

We will be applying Corollary 15.2 in the case when ν0 ≥ 0, ⟨ν0⟩ = 1.

Proof. All the terms in the corresponding integral identity, except the next one, are dealt with in
the same way as in the proof of Proposition 15.1. Let b = bn. Then

⟨div(bν), ν|ν|s−2⟩ = (s− 1)⟨bν, |ν|s−2∇ν⟩ = 2

s
(s− 1)⟨b · ∇|ν| s2 , |ν| s2 ⟩.

Hence we arrive at the counterpart of (15.13) with the coefficient of the dispersion term

C =
4(s− 1)

s2
− 2

s
(s− 1)

√
δ − (constant terms proportional to ε1)

that must be positive. We can fix ε1 as small as needed. What matters is the value of δ that
ensures that 4(s−1)

s2 − 2
s (s − 1)

√
δ > 0. The latter is equivalent to s < 2√

δ
, which is satisfied by

our assumptions. □

15.2. Global weighted L2 summability of a form-bounded drift. A form-bounded vector
field b ∈ Fδ is a priori only local summable: |b| ∈ L2

loc. In fact, condition b ∈ Fδ implies global
square summability of |b|, but with respect to weight ρx. Indeed, selecting√ρx as the test function
in the definition of b ∈ Fδ and using (2.2), we obtain

⟨|b|2ρx⟩ ≤
δ

4
⟨ |∇ρx|

2

ρx
⟩+ cδ⟨ρx⟩

≤
(
δ

4

(d+ ε0)
2

4
σ + cδ

)
⟨ρ⟩ <∞, (15.15)

where we have used ⟨ρx⟩ = ⟨ρ⟩. Moreover, we have the following global convergence result:

Lemma 15.1. Let b ∈ Fδ, {bn} ∈ [b]. Then, for every x ∈ Rd, ⟨|bn1 − bn2 |2ρx⟩ → 0 as n1,
n2 →∞.

Proof. First, let us show that

lim
R→∞

⟨|bn1 − bn2 |21Rd\BR+1
ρx⟩ → 0 uniformly in n1, n2. (15.16)

Indeed, replacing 1Rd\BR+1
by greater function η2R, where

ηR(y) := ξR(|y|), ξR(r) :=


0, 0 ≤ r < R,
r −R, R ≤ r ≤ R+ 1,
1, r > R+ 1,
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and noting that |∇ηR(y)| ≤ 1R<|y|<R+1, we estimate

⟨|bn1 − bn2 |21Rd\BR+1
ρx⟩ ≤ ⟨|bn1 − bn2 |2η2Rρx⟩
≤ 4δ∥∇(ηR

√
ρx)∥22 + 4cδ∥ηR

√
ρx∥22,

where ∥ηR
√
ρx∥2 → 0 as R→∞, and so, in view of the second estimate in (15.5), ∥ηR∇(

√
ρx)∥2 →

0 as R→∞. Also, taking without loss of generality x = 0,

∥(∇ηR)
√
ρ∥22 = ⟨1R≤|·|≤R+1ρ⟩ = CR−d−εRd = R−ε → 0

as R→∞. This yields (15.16).
In turn, inside the ball BR we have ⟨|bn1 − bn2 |21BR

ρx⟩ → 0 as n1, n2 →∞ since bn1 − bn2 → 0
in L2

loc. This ends the proof. □

16. Proof of Proposition 10.1 (Embedding property)

We will need the following lemma.

Lemma 16.1 ([G, Lemma 7.1]). If {zi}∞i=0 ⊂ R+ is a sequence of positive real numbers such that

zi+1 ≤ NCi0z1+αi

for some C0 > 1, α > 0, and

z0 ≤ N− 1
αC

− 1
α2

0 .

Then limi zi = 0.

Throughout the proof, we write for brevity

b = bn, q = qm, Qi = Qim, w = wn,m.

It suffices to estimate the positive part of w:

sup
Rd

w+ ≤ K1(µ− µ0)
−β

p
〈
|Qi|pθ

′
(|∇f |pθ

′
+ |f |pθ

′
)
〉 1

pθ′

+K2(µ− µ0)
− 1

pθ ⟨|Qi|pθ(|∇f |pθ + |f |pθ)⟩
1
pθ . (16.1)

Step 1. First, we prove the following energy inequality: there exist generic constants µ0 ≥ 0
and C0, C such that, for every k ≥ 0 and all µ > µ0, the positive part v := (w − k)+ of w − k
satisfies

(µ− µ0)∥v
p
2 ∥22 + C0∥∇v

p
2 ∥22 ≤ C

[
⟨|Qi|p|∇f |p1v>0⟩+ ⟨(1 + |Qi|p)|f |p1v>0⟩

]
. (16.2)

Proof of (16.2). We obtain from equation (10.1), using that both µ and k are non-negative,
(µ − ∆ + (b + q) · ∇)(w − k) ≤ (bi + qi)f. We now basically apply the energy inequality of
Proposition 15.1(i) with s = p. The fact that we have an elliptic differential inequality instead
of an elliptic equation does not change anything since we multiply it by a non-negative function
vp−1. So, we integrate, apply b ∈ Fδ and use anti-symmetry of the stream matrix Q of drift q:

(µ− µ0)⟨vp⟩+ C1⟨|∇v
p
2 |2⟩ ≤ ⟨(bi + qi)f, vp−1⟩. (16.3)
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Let us estimate the terms in the right-hand side. First,

|⟨bif, vp−1⟩| ≤ ε⟨|bi|2, vp⟩+ 1

4ε
⟨|f |2vp−2⟩

≤ ε
(
δ⟨|∇v

p
2 |2⟩+ cδ⟨vp⟩

)
+

1

4ε

(
p− 2

p
⟨vp⟩+ 2

p
⟨|f |p1v>0⟩

)
.

Second,

|⟨qif, vp−1⟩| = |⟨divQi, fvp−1⟩|

≤ |⟨Qi, (∇f)vp−1⟩|+ 2(p− 1)

p
|⟨Qi, fv

p
2−1∇v

p
2 ⟩| =: K1 +

2(p− 1)

p
K2,

where

K1 ≤
1

2
⟨|Qi|2|∇f |2vp−2⟩+ 1

2
⟨vp⟩

≤ 1

2

(
2

p
⟨|Qi|p|∇f |p1v>0⟩+

p− 2

p
⟨vp⟩

)
+

1

2
⟨vp⟩

and

K2 ≤ ε⟨|∇v
p
2 |2⟩+ 1

4ε
⟨|Qi|2f2vp−2⟩

≤ ε⟨|∇v
p
2 |2⟩+ 1

4ε

(
2

p
⟨|Qi|p|f |p1v>0⟩+

p− 2

p
⟨vp⟩

)
.

Thus,

|⟨qif, vp−1⟩| ≤ 2(p− 1)

p
ε⟨|∇v

p
2 |2⟩+ c1

(
⟨|Qi|p|∇f |p1v>0⟩+ ⟨|Qi|p|f |p1v>0⟩

)
+ c2⟨vp⟩,

where c1, c2 depend on ε and p.

Substituting the resulting estimates in (16.3) and selecting ε sufficiently small, we obtain esti-
mate (16.2).

Step 2. In what follows, we will be selecting k > 0. Then |{v > 0}| < ∞. We obtain from
(16.2), using the Sobolev embedding theorem,

(µ− µ0)∥v∥pp + CS∥v∥ppd
d−2

≤ C
〈(
|Qi|p|∇f |p + (1 + |Qi|p)|f |p

)
1v>0

〉
. (16.4)

We estimate the left-hand side of (16.4) using the interpolation inequality:

(µ− µ0)
β∥v∥ppθ0 ≤ β(µ− µ0)∥v∥pp + (1− β)∥v∥p

L
pd

d−2

, 0 < β < 1,
1

pθ0
= β

1

p
+ (1− β)d− 2

pd
,

where 1 < θ0 <
d
d−2 . So,

(µ− µ0)
β∥v∥ppθ0 ≤ C2

[〈(
|Qi|p|∇f |p + (1 + |Qi|p)|f |p

)
1v>0

〉]
Let us fix β small enough so that we have θ0 > θ. (Recall that 1 < θ < d

d−2 was fixed in the
statement of the proposition.) Applying Hölder’s inequality, we obtain

(µ− µ0)
β∥v∥ppθ0 ≤ C3H|{v > 0}| 1θ ,
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where
H :=

〈(
|Qi|pθ

′
|∇f |pθ

′
+ (1 + |Qi|pθ

′
)|f |pθ

′)
1v>0

〉 1
θ′ .

On the other hand, again by Hölder’s inequality,

∥v∥pθpθ ≤ ∥v∥
pθ
pθ0
|{v > 0}|1−

θ
θ0 .

Therefore, we obtain
∥v∥pθpθ ≤ C̃(µ− µ0)

−βθHθ|{v > 0}|2−
θ
θ0 .

Step 3. Now, put vm := (w− km)+, km := ξ(1− 2−m) ↑ ξ, where constant ξ > 0 will be chosen
later.

Remark 16.1. We have k0 = 0, but we will not encounter the volume of {u > 0} in the proof
(clearly, |{u > 0}| can be infinite).

So,
1

ξpθ
∥vm+1∥pθpθ ≤ C̃

1

ξpθ
(µ− µ0)

−βθHθ|{u > km+1}|2−
θ
θ0 .

From now on, we require constant ξ to satisfy ξp ≥ (µ− µ0)
−βH, so

1

ξpθ
∥vm+1∥pθLpθ(Bm+1)

≤ C̃|{u > km+1}|2−
θ
θ0 .

Now,

|{w > km+1}| =
∣∣∣∣{( w − km

km+1 − km

)pθ
> 1

}∣∣∣∣
≤ (km+1 − km)−pθ⟨vpθm ⟩ = ξ−pθ2pθ(m+1)∥vm∥pθpθ,

so, applying the previous two inequalities, we obtain

1

ξpθ
∥vm+1∥pθpθ ≤ C2

pθm(2− θ
θ0

)

(
1

ξpθ
∥vm∥pθLpθ(Bm)

)2− θ
θ0

.

Step 4. Denote zm := 1
ξpθ
∥vm∥pθpθ. Then

zm+1 ≤ Cγmz1+αm , m = 0, 1, 2, . . . , α := 1− θ

θ0
, γ := 2pθ(2−

θ
θ0

)

and z0 = 1
ξpθ
⟨wpθ+ ⟩ ≤ C− 1

α γ−
1

α2 provided that we fix ξ by

ξpθ := C
1
α γ

1
α2 ⟨wpθ+ ⟩+ (µ− µ0)

−βθHθ

(so that it also satisfies the previous requirement ξp ≥ (µ − µ0)
−βH). Hence, by Lemma 16.1,

zm → 0 as m→∞. Therefore, w+ ≤ ξ. Thus, we obtain inequality

sup
Rd

w+ ≤ K
(
⟨wpθ+ ⟩

1
pθ + (µ− µ0)

−β
p
〈(
|Qi|pθ

′
|∇f |pθ

′
+ (1 + |Qi|pθ

′
)|f |pθ

′)
1v>0

〉 1
pθ′

)
. (16.5)

Step 5. It remains to estimate ⟨wpθ+ ⟩
1
pθ . We already did this in (16.2) (use pθ > p):

(µ− µ0)
1
pθ ∥w+∥pθ ≤ C

1
pθ
[
⟨|Qi|pθ|∇f |pθ⟩+ ⟨(1 + |Qi|pθ)fpθ⟩

] 1
pθ .

This inequality, applied in (16.5), yields (16.1) and thus ends the proof of Proposition 10.1. □
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17. Proof of Proposition 10.2 (Hölder continuity)

The following is a well-known consequence of the John-Nirenberg inequality:

Proposition 17.1. There exists constant C = C(d) such that, for every g ∈ BMO,

sup
x∈Rd,R>0

1

|BR(x)|
⟨e

C|g−(g)BR(x)|
∥g∥BMO 1BR(x)⟩ ≤ C. (17.1)

In particular, for every 1 ≤ s <∞, we have g ∈ Lsloc and

sup
x∈Rd,R>0

1

|BR(x)|
⟨|g − (g)BR(x)|s1BR(x)⟩ ≤ C(d, s)∥g∥sBMO. (17.2)

Put for brevity b = bn, q = qm, Q = Qm and u = un,m. So,(
µ−∆+ (b+ q) · ∇

)
u = f.

Let us fix some 1 < θ < d
d−2 . Let p > 2

2−
√
δ
. By our assumption δ < 4, so such p exist.

Lemma 17.1 (Caccioppoli’s inequality). Let v := (u − k)+, k ∈ R. For all 0 < r < R ≤ 1, we
have

∥∇v
p
2 ∥2L2(Br)

≤ K1

(R− r)2
|BR|

1
θ′ (1 + ∥Q∥2BMO)∥v

p
2 ∥2L2θ(BR) +K2∥|f − µu|

p
2 1v>0∥2L2(BR) (17.3)

for constants K1, K2 independent of k, r, R and n, m.

Proof. Let {η = ηr,R} be a family of [0, 1]-valued smooth cut-off functions satisfying

η = 1 in Br, η = 0 in Rd \BR, (17.4)

|∇η| ≤ c

R− r
1BR

,
|∇η|2

η
≤ c

(R− r)2
1BR

(17.5)

with constant c independent of r, R. We rewrite the equation for u in the form (−∆+(b+q)·∇
)
u =

f − µu, multiply it by vp−1η and integrate, obtaining

4(p− 1)

p2
⟨∇v

p
2 , (∇v

p
2 )η⟩+ 2

p
⟨∇v

p
2 , v

p
2∇η⟩

≤ −2

p
⟨b · ∇v

p
2 , v

p
2 η⟩ − 2

p
⟨q · ∇v

p
2 , v

p
2 η⟩+ ⟨f − µu, vp−1η⟩.

Hence, by Cauchy-Schwarz,(
4(p− 1)

p
− 4

p
ϵ

)
⟨|∇v

p
2 |2η⟩ ≤ p

4ϵ

〈
vp
|∇η|2

η

〉
− 2⟨b · ∇v

p
2 , v

p
2 η⟩ − 2⟨q · ∇v

p
2 , v

p
2 η⟩+ p⟨f − µu, vp−1η⟩

=: I1 + I2 + I3 + I4. (17.6)

Let us estimate terms I1-I4. We start with the term I3 containing the distribution-valued vector
field q = ∇Q. The other terms I1, I2 and I4 will be estimated in such a way as to fit the
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estimate on I3. The following argument was used in [H]. Set Q̃ij := Qij − (Qij)R, where, recall,
(Qij)R = (Qij)BR

is the average of Qij over ball BR. We have

I3 = −2⟨q · ∇v
p
2 , v

p
2 η⟩ = −

d∑
i=1

⟨qi∇ivp, η⟩

(use identity qi =
d∑
j=1

∇jQij =
d∑
j=1

∇jQ̃ij and integrate by parts)

=
d∑

i,j=1

⟨Q̃ij∇j∇ivp, η⟩+
d∑

i,j=1

⟨Q̃ij∇ivp,∇jη⟩

=

d∑
i,j=1

⟨Q̃ij∇j∇ivp, η⟩+ 2
d∑

i,j=1

⟨Q̃ij∇iv
p
2 , v

p
2∇jη⟩.

Due to the anti-symmetry of Q, the first sum on the right hand side is zero, so I3 = 2⟨Q̃ ·
∇v

p
2 , v

p
2∇η⟩. Hence

|I3| ≤ ε1⟨|∇v
p
2 |2η⟩+ 1

ε1
⟨|Q̃|2vp |∇η|

2

η
⟩. (17.7)

The second term in the RHS of (17.7) is bounded as follows, using (17.5):

⟨|Q̃|2vp |∇η|
2

η
⟩ ≤ c

(R− r)2
〈
|Q̃|2θ

′
1BR

〉 1
θ′ ⟨vpθ1BR

⟩ 1θ

(use (17.2))

≤ C

(R− r)2
|BR|

1
θ′ ∥Q∥2BMO⟨vpθ1BR

⟩ 1θ . (17.8)

Thus, to summarize, we have

|I3| ≤ ε1⟨|∇v
p
2 |2η⟩+ 1

ε1

C

(R− r)2
|BR|

1
θ′ ∥Q∥2BMO⟨vpθ1BR

⟩ 1θ .

Remark 17.1. If the entries of Q are in L∞, then we can take θ = 1. Indeed, in this case we can
obtain (17.8) directly: ⟨|Q̃|2vp |∇η|2

η ⟩ ≤
4c

(R−r)2 ∥Q∥
2
∞⟨vp1BR

⟩.

Now, we estimate the remaining terms I1, I2 and I4. By (17.5),

I1 ≤
cp

4ϵ(R− r)2
|BR|

1
θ′ ⟨vpθ1BR

⟩ 1θ .
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Next,

1

2
|I2| ≤ ⟨|b||∇v

p
2 |, v

p
2 η⟩ ≤ α⟨|∇v

p
2 |η⟩+ 1

4α
⟨|b|2, vpη⟩, α =

√
δ

2
(use b ∈ Fδ)

≤
√
δ

2
⟨|∇v

p
2 |2η⟩+ 1

2
√
δ

(
δ⟨|∇(v

p
2
√
η)|2⟩+ cδ⟨vpη⟩

)
≤
√
δ

2
⟨|∇v

p
2 |2η⟩+

√
δ

2

(
(1 + ε0)⟨|∇v

p
2 |2η⟩+ 1

4

(
1 +

1

ε0

)
⟨vp |∇η|

2

η
⟩
)
+

cδ

2
√
δ
⟨vpη⟩

≤
√
δ

2
(2 + ε0)⟨|∇v

p
2 |η⟩+

(√
δ

8
(1 +

1

ε0
)

c

(R− r)2
+

cδ

2
√
δ

)
|BR|

1
θ′ ⟨vpθ1BR

⟩ 1θ .

Finally, by Young’s inequality, for every ε2 > 0,

|I4| = |⟨f − µu, vp−1η⟩| ≤ 1

pεp2
⟨|f − µu|p1{v>0}1BR

⟩+ εp
′

2

p′
|BR|

1
θ′ ⟨vpθ1BR

⟩ 1θ .

Now, applying these estimates on I1-I4 in (17.6), we obtain:(
4(p− 1)

p
− 4

p
ε− (2 + ε0)

√
δ − ε1

)
⟨|∇v

p
2 |2η⟩ ≤ C1

(R− r)2
|BR|

1
θ′ (1 + ∥Q∥2BMO)⟨vpθ1BR

⟩ 1θ

+ C2∥|f − µu|
p
2 1v>01BR

∥22,

where ε, ε0, ε1 are fixed sufficiently small so that the expression in the brackets in the LHS is
strictly positive. The latter is possible since δ < 4 and p > 2

2−
√
δ
. This ends the proof of Lemma

17.1. □

Lemma 17.2. Fix α > 0 by α(α+ 1) = 1− θ(d−2)
d . Then, for all 0 < r < R ≤ 1,

sup
BR

2

u ≤ C
(

1

|BR|
⟨upθ1BR∩{u>0}⟩

) 1
pθ
(
|BR ∩ {u > 0}|

|BR|

) α
pθ

+R
2
p (17.9)

for C independent of n, m, r and R.

Proof. Step 1. Fix a family of cut-off functions η = ηr,R ∈ C∞
c such that

η = 1 on Br η = 0 on Rd \B R+r
2
, (17.10)

and

|∇η| ≤ c

R− r
1B r+R

2

,
|∇η|2

η
≤ c

(R− r)2
1B r+R

2

(17.11)

with constant c independent of r, R. Set v = (u − k)+, where k ∈ R will be chosen later. Using
Sobolev’s embedding theorem, we have

⟨v
pd

d−21Br⟩
d−2
d ≤ ⟨(v

p
2 η

1
2 )

2d
d−21BR+r

2

⟩
d−2
d

≤ C2
S⟨|∇(v

p
2 η

1
2 )|21BR+r

2

⟩

≤ 2C2
S

(
⟨|∇v

p
2 |2η1BR+r

2

⟩+ ⟨vp |∇η|
2

η
1BR+r

2

⟩
)
.
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We rewrite the latter, after applying Hölder’s inequality in the second term, as follows:

∥v
p
2 1Br∥22d

d−2
≤ C1

(
∥(∇v

p
2 )1BR+r

2

∥22 +
|BR|

1
θ′

(R− r)2
∥v

p
2 1BR+r

2

∥22θ

)
.

Next, we apply Lemma 17.1 to the first term in the RHS, obtaining

∥v
p
2 1Br∥22d

d−2
≤ C2

(
|BR|

1
θ′

(R− r)2
∥v

p
2 1BR

∥22θ + ∥|f − µu|
p
2 1v>01BR

∥22
)
.

Next, applying Hölder’s inequality in the second term in the RHS, we estimate

∥|f − µu|
p
2 1v>01BR

∥22 ≤ ∥f − µu∥p∞|BR ∩ {v > 0}| 1θ |BR|
1
θ′ ,

which gives us, upon noting that ∥f − µu∥∞ ≤ 2∥f∥∞,

∥v
p
2 1Br∥22d

d−2
≤ C2

(
|BR|

1
θ′

(R− r)2
∥v

p
2 1BR

∥22θ + |BR|
1
θ′ 2p∥f∥p∞|BR ∩ {u > k}| 1θ

)
.

Representing |BR|
1
θ′ = |BR|

d−2
d + 2

d−
1
θ , and dividing both sides of the previous inequality by

|BR|
d−2
d , we have

1

|BR|
d−2
d

∥v
p
2 1Br∥22d

d−2
≤ C2

(
|BR|

2
d

1

(R− r)2
1

|BR|
1
θ

∥v
p
2 1BR

∥22θ

+ |BR|
2
d 2p∥f∥p∞

(
|BR ∩ {u > k}|

|BR|

) 1
θ
)
.

(17.12)

Next, note that if h < k, then (u− k)+ ≤ (u− h)+. Therefore, by Chebyshev’s inequality,

|BR ∩ {u > k}| 1θ ≤ 1

(k − h)p
⟨(u− h)pθ+ 1BR

⟩ 1θ .

Recalling that v = (u− k)+ and applying the last inequality in (17.12), we obtain(
⟨(u− k)

pd
d−2

+ 1Br⟩
|BR|

) d−2
d

≤ C3|BR|
2
d

(
1

(R− r)2
+

1

(k − h)p

)(
⟨(u− h)pθ+ 1BR

⟩
|BR|

) 1
θ

.

Now, using Hölder’s inequality and then applying the previous estimate, we get

⟨(u− k)pθ+ 1Br⟩
|BR|

≤
(
⟨(u− k)

pd
d−2

+ 1Br⟩
|BR|

) θ(d−2)
d
(
|Br ∩ {u > k}|

|BR|

)1− θ(d−2)
d

≤ Cθ3 |BR|
2θ
d

(
1

(R− r)2
+

1

(k − h)p

)θ (⟨(u− h)pθ+ 1BR
⟩

|BR|

)(
|BR ∩ {u > k}|

|BR|

)1− θ(d−2)
d

Multiplying this inequality by
(

|Br∩{u>k}|
|BR|

)α [
≤ 1

(k−h)pθα

(
⟨(u−h)pθ+ 1BR

⟩
|BR|

)α]
, and selecting α > 0

as in the statement of the lemma, i.e. such that α(α+ 1) = 1− θ(d−2)
d , we get〈

(u− k)pθ+ 1Br

〉
|BR|

(
|Br ∩ {u > k}|

|BR|

)α
≤ Cθ3 |BR|

2θ
d

(
1

(R− r)2
+

1

(k − h)p

)θ
1

(k − h)pθα

(
⟨(u− h)pθ+ 1BR

⟩
|BR|

(
|BR ∩ {u > k}|

|BR|

)α)1+α



SDES WITH SINGULAR DRIFT 73

At the next step, we are going to iterate this inequality.

Step 2. Now, define

rm :=
R

2

(
1 +

1

2m

)
, Bm := Brm

km := ξ(1− 2−m),

for a positive constant ξ to be determined later. Setting

zm ≡ z(km, rm) :=

〈
(u− km)pθ+ 1Bm

〉
|BR|

(
|Bm ∩ {u > km}|

|BR|

)α
,

we rewrite the previous inequality, upon selecting k := km+1 and h := km there, as

zm+1 ≤ Cθ3
|BR|

2θ
d

R2θ

(
22m + 2mp

R2

ξp

)θ
2mpθα

ξpθα
z1+αm . (17.13)

In what follows, we restrict out choice of constant ξ to those satisfying

ξp ≥ R2. (17.14)

Then, since p ≥ 2,

zm+1 ≤
( C4

ξpα
)θ
2mpθ(1+α)z1+αm .

Therefore, setting C0 = 2pθ(1+α) and N = ( C4

ξpα )
θ, we have the first inequality in Lemma 16.1,

i.e. zm+1 ≤ NCi0z1+αm . To apply this lemma, we need to verify the second inequality there, i.e.

z0 ≤ N− 1
αC

− 1
α2

0 ,

where, recall, z0 =
⟨upθ1BR∩{u>0}⟩

|BR|
( |BR∩{u>0}|

|BR|
)α
. The previous inequality holds, by the definition

of N , if we select ξ satisfying

ξ ≥ 2
1+α

α2 C
1
pα

4 z
1
pθ

0 (17.15)

We combine (17.14) and (17.15) by taking ξ = 2
1+α

α2 C
1
pα

4 z
1
pθ

0 + R
2
p . Now Lemma 16.1 yields

z(ξ, R2 ) = 0, i.e. supBR
2

u ≤ ξ. Hence, supBR
2

u ≤ Cz
1
pθ

0 + R
2
p , as claimed. The proof of Lemma

17.2 is completed. □

Set
osc(u,R) := sup

y,y′∈BR

|u(y)− u(y′)|.

Lemma 17.3. Fix k0 by 2k0 =M(2R)+m(2R) := supB2R
u+ infB2R

u. Assume that |BR ∩{u >
k0}| ≤ γ|BR| for some γ < 1. If

osc(u, 2R) ≥ 2n+1CR
2
p , (17.16)

then, for kn :=M(2R)− 2−n−1osc(u, 2R),

|BR ∩ {u > kn}|
|BR|

≤ cn−
d

2(d−1) .
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Proof of Lemma 17.3. Let h ∈ (k0, k). Define

w :=


(u− h)

p
2 if h < u < k,

(k − h)
p
2 if u ≥ k,

0 if u ≤ h.

Note that w = 0 in BR \ (BR ∩ {u > k0}). The measure of this set is greater than γ|BR|, so the
Sobolev embedding theorem yields

(k − h)
p
2 |BR ∩ {u > k}|

d−1
d ≤ c1⟨w

d
d−11BR

⟩
d−1
d

≤ c2⟨|∇w|1∆⟩

≤ c2|∆|
1
2 ⟨|∇(u− h)

p
2 |21BR∩{u>h}⟩

1
2 ,

where ∆ := BR ∩ {u > h} \ (BR ∩ {u > k}). On the other hand, repeating the proof of Lemma
17.1, but estimating the term I3 there via (17.7) rather than going all the way to (17.8), we obtain

⟨|∇(u− h)
p
2 |21BR∩{u>h}⟩ ≤

C1

R2
⟨(u− h)p1B2R∩{u>h}⟩

+
C2

R2
⟨|Q− (Q)R|2(u− h)p1B2R∩{u>h}⟩

+ C3⟨|f − µu|p1B2R∩{u>h}⟩

Applying the John-Nirenberg inequality (17.2) in the second term, we get

⟨|∇(u− h)
p
2 |21BR∩{u>h}⟩ ≤ C4R

d−2(M(2R)− h)p + C5

R2
(M(2R)− h)p ·Rd∥Q∥2BMO

+ C6∥f − µu∥p∞Rd

≤ CRd−2(M(2R)− h)p + CRd,

(we have used ∥f − µu∥∞ ≤ 2∥f∥∞). For h ≤ kn, we have M(2R) − h ≥ M(2R) − kn =

2−n−1osc(u, 2R) ≥ CR
2
p , where we have used (17.16), in which case

(k − h)
p
2 |BR ∩ {u > k}|

d−1
d ≤ C|∆| 12R

d−2
2 (M(2R)− h)

p
2 .

Now, choosing increasing finite sequence k = ki :=M(2R)− 2−i−1osc(u, 2R) for i ∈ {1, 2, · · · , n}
and h = ki−1. Then

M(2R)− h = 2−iosc(u, 2R), |k − h| = 2−i−1osc(u, 2R)

so
|BR ∩ {u > kn}|

2(d−1)
d ≤ |BR ∩ {u > ki}|

2(d−1)
d ≤ C|∆i|Rd−2,

where ∆i = BR ∩ {u > ki} \ (BR ∩ {u > ki−1})]. Summing up over i, we obtain

n |BR ∩ {u > kn}|
2(d−1)

d ≤ CRd−2 |BR ∩ {u > k0}| ≤ C ′R2(d−1),

and the claimed inequality follows. This ends the proof of Lemma 17.3. □

We are in position to end the proof of Proposition 10.2. Fix k0 = 1
2(M(2R)+m(2R)). Without

loss of generality, |BR ∩ {u > k0}| ≤ 1
2 |BR| (otherwise replace u by −u). Set kn = M(2R) −

2−n−1osc(u, 2R) > k0. By Lemma 17.2 applied to u − kn (kn adds constant term µkn in the
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equation, but since {kn} is bounded, the constant in Lemma 17.2 can be chosen to be independent
of n), we have

sup
BR

2

(u− kn) ≤ C1

(
1

|BR|
⟨(u− kn)pθ1BR∩{u>kn}

) 1
pθ
(
|BR ∩ {u > kn}|

|BR|

) α
pθ

+R
2
p

≤ C1 sup
BR

(u− kn)
(
|BR ∩ {u > kn}|

|BR|

) 1+α
pθ

+R
2
p . (17.17)

Fix n by cn−
d

2(d−1) ≤ ( 1
2C1

)
pθ

1+α . We consider two cases. First, let osc(u, 2R) ≥ 2n+1R
2
p . Then by

Lemma 17.3 (with, say, C = 1) applied in the RHS of (17.17),

M(R/2)− kn ≤
1

2
(M(2R)− kn) +R

2
p

so

M(R/2) ≤M(2R)− 1

2n+1
osc(u, 2R) +

1

2

1

2n+1
osc(u, 2R) +R

2
p ,

which yields

M(R/2)−m(R/2) ≤M(2R)−m(2R)− 1

2

1

2n+1
osc(u, 2R) +R

2
p

=

(
1− 1

2n+2

)
osc(u, 2R) +R

2
p .

Next, if osc(u, 2R) ≤ 2n+1R
2
p , then

osc(u,R/2) ≤ (1− 1

2n+2
)osc(u, 2R) +

1

2
R

2
p .

This result provides the desired Hölder continuity of u by applying the next Lemma 17.4 with
τ = 1

4 , δ = logτ (1− 2−n−1), and 0 < β < 2−p
p ∧ δ. Note that the second inequality in Lemma 17.3

is satisfied when q = 1 and φ is non-decreasing, which is our situation. □

Lemma 17.4 ([G, Lemma 7.3]). Let φ(t) be a positive function, and assume that there exists a
constant q and a number 0 < τ < 1 such that for every 0 < R < R0,

φ(τR) ≤ τ δφ(R) +BRβ

with 0 < β < δ, and

φ(t) ≤ qφ(τkR)

for every t in the interval (τk+1R, τkR). Then, for every 0 < ρ < R < R0, we have

φ(ρ) ≤ C
( ρ
R

)β
φ(R) +Bρβ

with a constant C that depends only on q, τ , δ, and β.
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18. Proof of Proposition 10.4 (Separation property)

Step 1. Without loss of generality, x = 0. We will need the following local estimate on solution
u = un,m of (10.3): for all µ ≥ µ0 > 0,

sup
B 1

2

|u| ≤ K
(
⟨|u|pθ1B1⟩

1
pθ +

〈
|f |pθ

′
1B1

〉 1
pθ′

)
. (18.1)

In fact, it suffices to prove the previous estimate for supB 1
2

u+ in the LHS.

To that end, we first establish the following Caccioppoli’s inequality for v := (u− k)+, k ≥ 0:

∥v∥p
L

pd
d−2 (Br)

≤ C
[
(R− r)−2|BR|

1
θ′ ∥v∥p

Lpθ(BR)
+ ∥f1u>k∥pLp(BR)

]
. (18.2)

To prove (18.2), we argue as in the proof of Lemma 17.1, but treat the term µu differently: since
µ and k are non-negative, we have

µ(u− k)−∆(u− k) + (b+ q) · ∇(u− k) ≤ f.

Therefore, multiplying the previous inequality by vp−1η, with the cutoff function η defined by
(17.4), (17.5), and repeating the proof of Lemma 17.1, we obtain, for all 0 < r < R ≤ 1,

∥v
p
2 ∥2W 1,2(Br)

≤ C1

[
1

(R− r)2
|BR|

1
θ′ ∥v

p
2 ∥L2θ(BR) + ∥f1u>k∥

p
Lp(BR)

]
.

The Sobolev embedding theorem now yields (18.2).
Set

Rm :=
1

2
+

1

2m+1
, m ≥ 0,

so Bm := BRm is a decreasing sequence of balls converging to the ball of radius 1
2 . For the

purposes of this proof, we can estimate |BR|
1
θ′ ≤ 1, which will make the iterations below converge

slower, but will not change the sought estimate (18.1). Estimate (18.2) gives us

∥v∥p
L

pd
d−2 (Br)

≤ C12
2m∥v∥p

Lpθ(Bm)
+ C2∥f1u>k∥pLp(Bm)

≤ C12
2m∥v∥p

Lpθ(Bm)
+ C2H|Bm ∩ {v > 0}| 1θ , (18.3)

where H := ⟨|f |pθ′1B0⟩ 1
θ′ (B0 = B1 is the ball of radius 1). On the other hand, by Hölder’s

inequality,

∥v∥pθ
Lpθ(Bm+1)

≤ ∥v∥pθ
L

pd
d−2 (Bm+1)

(
|Bm ∩ {v > 0}|

)1− (d−2)θ
d

.

Applying (18.3) in the first multiple in the RHS, we obtain

∥v∥pθ
Lpθ(Bm+1)

≤ C
(
22θm∥v∥pθ

Lpθ(Bm)
+Hθ|Bm ∩ {v > 0}|

)(
|Bm ∩ {v > 0}|

)1− (d−2)θ
d

.

Put
vm := (u− km)+, km := ξ(1− 2−m) ↑ ξ,
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where constant ξ > 0 will be chosen later. Using 22θm ≤ 2pθm and dividing by ξpθ, we obtain

1

ξpθ
∥vm+1∥pθLpθ(Bm+1)

≤ C
(
2pθm

ξpθ
∥vm+1∥pθLpθ(Bm)

+
1

ξpθ
Hθ|Bm ∩ {u > km+1}|

)(
|Bm ∩ {u > km+1}|

)1− (d−2)θ
d .

From now on, we require that constant ξ satisfies ξp ≥ H, so

1

ξpθ
∥vm+1∥pθLpθ(Bm+1)

(18.4)

≤ C
(
2pθm

ξpθ
∥vm+1∥pθLpθ(Bm)

+ |Bm ∩ {u > km+1}|
)(
|Bm ∩ {u > km+1}|

)1− (d−2)θ
d .

Now,

|Bm ∩ {u > km+1}| =
∣∣Bm ∩{( u− km

km+1 − km

)2θ

> 1

}∣∣
≤ (km+1 − km)−pθ⟨vpθm 1Bm⟩ = ξ−pθ2pθ(m+1)∥vm∥pθLpθ(Bm)

,

so using ∥vm+1∥Lpθ(Bm) ≤ ∥vm∥Lpθ(Bm) in (18.4) and applying the previous inequality, we obtain

1

ξpθ
∥vm+1∥pθLpθ(Bm+1)

≤ C2pθm(2− θ
θ0

)

(
1

ξpθ
∥vm∥pθLpθ(Bm)

)2− (d−2)θ
d

.

Denote zm := 1
ξpθ
∥vm∥pθLpθ(Bm)

. Then

zm+1 ≤ Cγmz1+αm , m = 0, 1, 2, . . . , α := 1− (d− 2)θ

d
, γ := 2pθ(2−

(d−2)θ
d )

and z0 = 1
ξpθ
⟨upθ+ 1B0⟩ ≤ C− 1

α γ−
1

α2 (recall: B0 := BR0 ≡ B1) provided that we fix c by

ξpθ := C
1
α γ

1
α2 ⟨upθ+ 1B0⟩+Hθ.

Hence, by Lemma 16.1, zm → 0 as m → ∞. It follows that supB1/2
u+ ≤ ξ, and the claimed

inequality follows.

Step 2. Next, we bound ⟨|u|pθ1B1⟩
1
pθ using Lemma 15.1 with s = pθ, which allows us to conclude

that if σ (in the definition of weight ρ) is fixed sufficiently small, then for all x ∈ Rd

sup
B 1

2
(x)

u+ ≤ K
(
⟨|f |pθρx⟩

1
pθ +

〈
|f |pθ

′
1B1(x)

〉 1
pθ′

)
.

This ends the proof of Proposition 10.4. □
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19. Proof of Proposition 10.3 (Convergence)

The proof given below is close to [KS3, Proof of Theorem 4.3]. This argument (in L2) can, in
principle, be replaced by an argument based on the Lions’ variational approach that handles well
both b ∈ Fδ and q ∈ BMO−1 (regarding the latter, see [QX]).

In order to prove the existence of the limit, we need to construct first intermediate semigroups
e−tΛ(bn,q) in Lp. Here bn are bounded and smooth, but q can be singular.

Step 1. At the first step, we construct e−tΛ(0,q) in L2. Here we work over complex numbers (in
this regard, see Remark 19.1). Define sesquilinear form

τ [v, w] := ⟨∇v,∇w⟩+ ⟨q · ∇v, w⟩, D(τ) =W 1,2,

where ⟨v, w⟩ = ⟨vw̄⟩.
a) τ is bounded: |τ [v, w]| ≤ C∥∇v∥2∥∇w∥2. Indeed, by the compensated compactness estimate

(Proposition 2.1), |⟨q · ∇v, w⟩| ≤ C ′∥∇v∥2∥∇w|2.
b) τ is a sectorial form:

Im τ [v, v] ≤ KRe τ [v, v], v ∈ D(τ)

for some constant K > 0. Indeed, writing v = r+ ie, where r, e are real-valued elements of W 1,2,
we have

τ [v, v] = ⟨|∇r|2 + |∇e|2⟩+ ⟨q ·
[
(∇r)r + (∇e)e

]
⟩+ i⟨q · [(∇e)r − (∇r)e]⟩,

so, taking into that the second term vanishes due to the anti-symmetry of Q, we have

Re τ [v, v] = ⟨|∇r|2 + |∇e|2⟩, Im τ [v, v] = ⟨q · [(∇e)r − (∇r)e]⟩.

Now, invoking again the compensated compactness, we obtain Im τ [v, v] ≤ C∥Q∥BMORe τ [u, u].
c) Re τ [v, v] is a closed form, i.e. if vk → v in L2 and Re τ [vk − vl] → 0 as k, l → ∞, then

τ [vk − v]→ 0 (we only need to look at the real part of τ due to its sectoriality). But in our case
the latter is just a re-statement that W 1,2 is a complete space.

Therefore, there exists a unique (m-sectorial) operator Λ(0, q) such that

⟨Λ(0, q)v, w⟩ = τ [v, w], v ∈ D(Λ(0, q)) ⊂W 1,2, w ∈ D(τ) =W 1,2,

see [Ka, Ch. VI, §2]. This operator, beingm-sectorial, generates a holomorphic semigroup e−tΛ(0,q)

in L2.

Remark 19.1. A property of holomorphic semigroups that we will need at Step 5 is as follows:
for every f ∈ L2, t > 0, e−tΛ(0,q)f belongs to the domain D(Λ(0, q)).

Step 2. We need to construct e−tΛ(bn,q), i.e. to add the drift term bn · ∇. So, we re-do what we
did above for the sesquilinear form

τ [v, w] := ⟨∇v,∇w⟩+ ⟨q · ∇v, w⟩+ ⟨bn · ∇v, w⟩. (19.1)

In particular, applying Cauchy-Schwarz’ inequality to ⟨bn · ∇v, w⟩, we obtain

Im τ [v, v] ≤ K
(
Re τ [v, v] + C⟨v, v⟩

)
, (19.2)

where C = C(∥bn∥∞) ≥ 0. The cited results apply to the case (19.2), and we get (m-sectorial)
generator Λ(bn, q) of a holomorphic semigroup in L2 such that

⟨Λ(bn, q)v, w⟩ = τ [v, w] for τ defined by (19.1), (19.3)
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where v ∈ D(Λ(bn, q)) ⊂ W 1,2, w ∈ D(τ) = W 1,2. (Or we could appeal to the Hille perturbation
theorem and work with the algebraic sum Λ(bn, q) := Λ(0, q) + bn · ∇, D(Λ(bn, q)) = D(Λ(0, q)),
that still generates a holomorphic semigroup in L2.)

Step 3. Let us now note that we have the following quasi-contraction estimate for e−tΛ(bn,qm),
n,m = 1, 2, . . . , in Lp, p > 2

2−
√
δ
, p ≥ 2:

∥e−tΛ(bn,qm)f∥p ≤ eωt∥f∥p, t ≥ 0, f ∈ C∞
c . (19.4)

for some ω independent of n,m. Indeed, setting un,m = e−t(ω+Λ(bn,qm))f , we multiply the corre-
sponding parabolic equation (ω + ∂t −∆+ (bn + qm) · ∇)un,m = 0 by un,m|un,m|p−2 and repeat
the proof of Lemma 15.1 (without the weight there) with the obvious modifications for the time
derivative term (see Step 5 below for details). The constant ω > 0 needs to be chosen to account
e.g. for the constant cδ resulting from the use of condition b ∈ Fδ.

If we do include the weight ρx, then, again arguing as in the proof of Lemma 15.1, we obtain
a weighted quasi contraction estimate

∥e−tΛ(bn,qm)f∥Lp
ρx
≤ eω

′t∥f∥Lp
ρx
, t ≥ 0, (19.5)

for any x ∈ Rd, with ω′ independent of n, m or x. (Since ρx ≤ 1, the result of the next section
implies that

um,n = (µ+ Λ(bn, qm))−1f → un = (µ+ Λ(bn, q))
−1f in Lpρx . (19.6)

Moreover, (19.5) ensures that the resulting semigroup e−tΛ(bn,q) is strongly continuous in Lpρx .)

Step 4. From now on, we work over reals. Let us show convergence

e−tΛ(bn,qm) → e−tΛ(bn,q) in L2 loc. uniformly in t ≥ 0

as m→∞. Here n is fixed.
Since n is fixed, it is easily seen that the operator norms of the resolvents ∥(µ+Λ(bn, qm))−1∥2→2

are uniformly in m bounded, provided µ = µ(∥bn∥∞) is fixed sufficiently large. It suffices for us
(see [Ka, Ch.XI, §5]) to show the convergence of the resolvents

(µ+ Λ(bn, qm))−1f → (µ+ Λ(bn, q))
−1f in L2 as m→∞

for all f ∈ L2
c (subscript c means compact support).

The standard argument yields that un = (µ+ Λ(bn, q))
−1f is the unique weak solution to the

elliptic equation (µ−∆+ (bn + q) · ∇)un = f, where the former means that

µ⟨un, φ⟩+ ⟨∇un,∇φ⟩+ ⟨(bn + q) · ∇un, φ⟩ = ⟨f, φ⟩, φ ∈ C∞
c .

(The compensated compactness estimate |⟨q · ∇un, φ⟩| = |⟨Q · ∇un,∇φ⟩| ≤ C ′∥∇un∥2∥∇φ∥2 of
Proposition 2.1 allows us to pass to test functions φ ∈ W 1,2.) In turn, this uniqueness and the
usual weak compactness argument shows that un,m = (µ + Λ(bn, qm))−1f , i.e. solutions to the
approximating elliptic equations (µ − ∆ + (bn + qm) · ∇)un,m = f, converge weakly in W 1,2 to
the same limit un. Now we can appeal to the Rellich-Kondrashov theorem to obtain un,m → un
in L2

loc, and further to upgrade this convergence to un,m → un in L2 by “cutting tails” of un,m at
infinity uniformly in m using the upper Gaussian bound on the heat kernel of −∆+(bn+ qm) ·∇,
see [QX], and taking into account that f has compact support. (The constants in the upper
Gaussian heat kernel bound, which yields the bound on the integral kernel of the resolvents, will
depend on n. Since each bn is bounded, adding the drift term in bn · ∇ does not affect the proof
of the upper bound in [QX] which employs Moser’s iterations and the Davies device. In fact, one
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can account for bn · ∇ by once again introducing a constant term in the operator that will absorb
the contribution from bn · ∇ in Moser’s method.)

Now, since e−tΛ(bn,qm) are L∞ contractions, we obtain by interpolation that

e−tΛ(bn,qm) → e−tΛ(bn,q) in Lp loc. uniformly in t ≥ 0

for all p ≥ 2. This implies the convergence of the resolvents: as m→∞,

un,m = (µ+ Λ(bn, qm))−1f → un = (µ+ Λ(bn, q))
−1f in Lp (19.7)

with µ independent of n, m.

Step 5. Having constructed the intermediate semigroups e−tΛ(bn,q), our goal now is to show
that they converge as n→∞. For reader’s convenience, at this step we give a proof that assumes
additionally that bn → b in L2. In this case we obtain that, every f ∈ C∞

c ,

{vn(t) := e−t(ω+Λ(bn,q))f}∞n=1 is a Cauchy sequence in L∞([0, 1], Lp) (19.8)

for
p >

2

2−
√
δ
, p ≥ 2, for some fixed ω.

Taking into account Remark 19.1 about v(t) ∈ D(Λ(bn, q)) for all t > 0 and the identity (19.3),
we can write

⟨∂tvn, ψ⟩+ ω⟨vn, ψ⟩+ ⟨∇vn,∇ψ⟩+ ⟨bn · ∇vn, ψ⟩ − ⟨Q · ∇vn,∇ψ⟩ = 0, (19.9)

for all ψ(t, ·) ∈W 1,2, where, recall, ∇Q = q. Set

h := vn1 − vn2 .

Subtracting identities (19.9) for vn1 and vn2 from each other, we obtain

⟨∂th, ψ⟩+ ω⟨h, ψ⟩+ ⟨∇h,∇ψ⟩+ ⟨bn1 · ∇h, ψ⟩ − ⟨Q · ∇h,∇ψ⟩ = −(bn1 − bn2) · ∇vn2 .

We are basically in the setting of Proposition 15.2(i) with the only difference that Q is no longer
smooth and we are dealing with weak solutions of the parabolic equations rather than classical
solutions. However, the latter does not pose a difficulty: since p ≥ 2 the standard result on the
composition of Lipschitz functions with the elements of Sobolev spaces yield that h(t)|h(t)|p−2,
h(t)|h(t)|

p
2−1, |h(t)|

p
2 ∈W 1,2. Therefore, we can take ψ = h|h|p−2, obtaining

1

p
∂t⟨|h|p⟩+ ω⟨|h|p⟩+ 4(p− 1)

p2
⟨|∇|h|

p
2 |2⟩+ 2

p
⟨⟨bn1 · ∇|h|

p
2 , |h|

p
2 ⟩

≤ |⟨(bn1
− bn2

) · ∇vn2 , h|h|p−2⟩|, (19.10)

where we have used anti-symmetry of Q and h(0) = 0. We handle the term containing bn1 as
in the proof of Proposition 15.1, i.e. first applying quadratic inequality and then bn1 ∈ Fδ. Now,
handling the time derivative term as in the proof of Proposition 15.2, we obtain

1

p
sup
s∈[0,t]

⟨|h(s)|p⟩+
[
ω − 2

cδ√
δ

]ˆ t

0

∥h∥ppds+
[
4(p− 1)

p2
− 2

p

√
δ

]ˆ t

0

⟨|∇|h|
p
2 |2⟩ds

≤ 2

ˆ t

0

∥bn1 − bn2∥2∥∇vn2∥2∥h∥p−1
∞ ds. (19.11)

Take 1
2ω := 2 cδ√

δ
. Since p > 2

2−
√
δ
, the expressions in square brackets are strictly positive. In

the right-hand side of (19.11), ∥bn1 − bn2∥2 → 0 as n1, n2 → ∞ and ∥h(s)∥p−1
∞ ≤ 2p−1∥f∥p−1

∞ ,
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s ∈ [0, t], for all n1, n2. It remains to note that
´ t
0
∥∇vn2∥2ds is uniformly in n2 bounded. Indeed,

by (19.9) with n = n2 and ψ = vn2 upon noting that

|⟨bn2 · ∇vn2 , vn2⟩|+ |⟨Q · ∇vn2 ,∇vn2⟩|

= |⟨bn2
· ∇vn2

, vn2
⟩| ≤ 1

2
∥bn2∥22∥vn2∥2∞ +

1

2
∥∇vn2∥22,

where we have used again the anti-symmetry of Q. Now we use supn2
∥bn2∥2 <∞ and the obvious

a priori estimate ∥vn2(t)∥∞ ≤ ∥f∥∞, t ≥ 0. Thus, the right-hand side of (19.11) tends to 0 as
n1, n2 →∞. Hence h→ 0 in L∞([0, 1], Lp), and (19.8) follows. The latter and the contractivity
estimate (19.4) yield that the limit v = Lp- limn vn (loc. uniformly in t ≥ 0) determines a strongly
continuous semigroup in Lp, say, v(t) =: e−tΛ(b,q)f . In turn, the convergence of the semigroups
yields the convergence of the resolvents

un = (µ+ Λ(bn, q))
−1f → u = (µ+ Λ(b, q))−1f in Lp

with µ independent of n (proportional to ω). In view of (19.7), the existence of the limit u =
Lp- limn un = Lp- limn limm un,m follows.

Step 6. Finally, we prove convergence in the general case, i.e. we do not assume global conver-
gence of bn to b in L2. We show that, for any x ∈ Rd, for every f ∈ C∞

c ,

{vn(t) := e−t(µ+Λ(bn,q))f}∞n=1 is a Cauchy sequence in L∞([0, 1], Lpρx) (19.12)

for p > 2
2−

√
δ
, p ≥ 2, for some fixed ω. Then, repeating the argument in the end of Step 5 but

using (19.5) and (19.6), we will obtain the claimed in Proposition 10.3 existence of the limit

u

(
= Lpρx- lim

n
un

)
= Lpρx- lim

n
lim
m
un,m.

Let us prove (19.12). This time, taking ψ = h|h|p−2ρx, we obtain

sup
s∈[0,t]

⟨|h(s)|pρx⟩+ C1

ˆ t

0

⟨|h|pρx⟩ds+C2

ˆ t

0

⟨|∇|h|
p
2 |2ρx⟩ds

≤ C3

ˆ t

0

|⟨(bn1 − bn2) · ∇vn2 , h|h|p−2ρx⟩|ds (19.13)

for constants C1-C3 independent of n, m, constant C1 being strictly positive provided that σ in
the definition of ρ is fixed sufficiently small. Arguing as at the previous step, we obtain

ˆ 1

0

sup
n2

⟨|∇vn2
(s)|2ρx⟩ds <∞.

Therefore,
ˆ T

0

|⟨(bn1
− bn2

) · ∇vn2
, h|h|p−2ρx⟩|ds ≤ ⟨|bn1

− bn2
|2ρx⟩∥h∥p−1

∞

ˆ 1

0

⟨|∇vn2
|2ρx⟩ds

(use ∥h∥∞ ≤ 2∥f∥∞ and apply Lemma 15.1)
→ 0 as n1, n2 →∞.

Combining this with (19.13), we obtain the claimed convergence (19.12). □
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Remark 19.2. If we try to obtain a stronger result about the existence of the limit s-Lp- limn,m um,n
by extending the proof of Lemma 10.3 to the sequence h := un1,m1 −un2,m2 , then we get an extra
term in the right-hand side of (19.10): |⟨(Qm1

− Qm2
) · ∇un2,m2

,∇(h|h|p−2)⟩|. It can be dealt
with in two ways:

(a) We can estimate

|⟨(Qm1 −Qm2) · ∇un2,m2 ,∇(h|h|p−2)⟩| ≤ ∥Qm1 −Qm2∥s∥∇un2,m2∥s′(p− 1)(2∥f∥∞)p−2∥∇h∥2,

1

s
+

1

s′
=

1

2
.

So, assuming for the illustration purposes that we have global convergence ∥Qm1 − Qm2∥s → 0
as m1,m2 →∞, we need a bound on ∥∇un2,m2

∥s′ for a s′ > 2. In principle, s′ can be chosen to
be close to 2. To obtain such an estimate, we can use Gehring-Giaquinta-Modica’s lemma as in
the proof of Theorem 8.3, but this, at least in the present form of the argument, requires us to
consider the equation in L2, hence we need to require δ < 1 rather than δ < 4 as in (5.3).

(b) Another option is to use the estimate

|⟨(Qm1 −Qm2) · ∇un2,m2 ,∇(h|h|p−2)⟩| ≤ ∥Qm1 −Qm2∥BMO∥∇un2,m2∥2(2∥f∥∞)p−2∥∇h∥2,

where ∥∇un2,m2∥2 can be estimated as in the proof of Theorem 10.3, but now to have convergence
∥Qm1 −Qm2∥BMO → 0 as m1,m2 →∞ we need a stronger hypothesis of the matrix field Q and
thus on q, namely, that Q has entries in VMO(Rd).

□

20. Proof of Lemma 10.3

It suffices to carry out the proof for bn and qm, and then use the convergence result of Propo-
sition 10.3. Thus, our goal is to show that

sup
n,m
∥∇un,m∥2+ε <∞ (20.1)

for some ε > 0 independent of n,m.
Put for brevity b = bn, q = qm and u = un,m, so(

µ−∆+ (b+ q) · ∇
)
u = f.

Let us fix some 1 < θ < d
d−2 .

By Lemma 17.1 (with p = 2 there, which is admissible since δ < 1), the function v := (u− k)+
(k ∈ R) satisfies Caccioppoli’s inequality: for all x ∈ Rd, 0 < r < R < 1

2 ,

∥∇v∥2L2(Br(x))
≤ K1

(R− r)2
|BR|

1
θ′ (1 + ∥Q∥2BMO)∥v∥2L2θ(BR) +K2∥(f − µu)1v>0∥2L2(BR), (20.2)

for constants K1, K2 independent of k, r, R and n, m. (There is some abuse of notation: our R
here is not the radius of a fixed large ball in Lemma 10.3, but this should not cause a confusion.)
We will obtain the sought bound (20.1) by applying a corollary of this Caccioppoli’s inequality in
the Gehring-Giaquinta-Modica lemma:
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Lemma 20.1. Assume that there exist constants K ≥ 1, 1 < ν < ∞ such that, for given
0 ≤ g ∈ Lqloc, 0 ≤ h ∈ Lνloc ∩ L∞ we have, for all x ∈ Rd,(

1

|BR|
⟨gν1BR(x)⟩

) 1
ν

≤ K

|B2R|
⟨g1B2R(x)⟩+

(
1

|B2R|
⟨hν1B2R(x)⟩

) 1
ν

for all 0 < R < 1
2 . Then g ∈ Lsloc for some s > ν and, for all x ∈ Rd,(

1

|BR|
⟨gs1BR(x)⟩

) 1
s

≤ C1

(
1

|B2R|
⟨gν1B2R(x)⟩

) 1
ν

+ C2

(
1

|B2R|
⟨hs1B2R(x)⟩

) 1
s

.

Remark 20.1. The authors of [KrS] proved Lemma 20.1 with explicit constants independent of
the dimension d.

We are in position to prove (20.1). Put, for brevity, x = 0.
Step 1. Set (un)B2R

:= 1
|B2R|⟨un1B2R

⟩. Applying (20.2) to the positive and the negative parts
of un − (un)B2R

, we obtain

⟨|∇un|21BR
⟩ ≤ K1

|B2R|
2
d

|B2R|
1
θ′ (1+∥Q∥2BMO)⟨|un−(un)B2R

|2θ1B2R
⟩ 1θ+K2⟨|f−µun|21B2R

⟩, 0 < R <
1

2
.

(20.3)
By the Sobolev-Poincaré inequality,(

1

|B2R|
⟨(un − (un)B2R

)2θ1B2R
⟩
) 1

2θ

≤ C|BR|
1
d

(
1

|B2R|
⟨|∇un|

2θd
d+2θ 1B2R

⟩
) d+2θ

2θd

, (20.4)

i.e.

⟨(un − (un)B2R
)2θ1B2R

⟩ 1θ ≤ C2|BR|
2
d+

1
θ

(
1

|B2R|
⟨|∇un|

2θd
d+2θ 1B2R

⟩
) d+2θ

θd

.

Plug in above estimate in (20.4), and divide both side by |BR| then for appropriate constants C1

and c were C1 depends on ∥Q∥BMO

1

|BR|
⟨|∇un|21BR

⟩ ≤ C1

(
1

|B2R|
⟨|∇un|

2θd
d+2θ 1B2R

⟩
) d+2θ

θd

+
c

|B2R|
⟨|f − µun|21B2R

⟩,

Then the condition of the Gehring-Giaquinta-Modica lemma is verified with g = |∇un|
2θd

d+2θ ,
gν = |∇un|2 (so ν = d+2θ

θd ) and h = (c
1
2 |f − µun|)

2θd
d+2θ , hν = c|f − µun|2. Hence there exists

s > d+2θ
θd such that(

1

|BR|
⟨|∇un|s

2θd
d+2θ 1BR

⟩
) 1

s

≤ C1

(
1

|B2R|
⟨|∇un|21B2R

⟩
) θd

d+2θ

+C2

(
1

|B2R|
⟨|f −µun|s

2θd
d+2θ 1B2R

⟩
) 1

s

,

where all constants are independent of n, or

1

|BR|
⟨|∇un|s

2θd
d+2θ 1BR

⟩ ≤ C ′
1

(
1

|B2R|
⟨|∇un|21B2R

⟩
)s θd

d+2θ

+ C ′
2

1

|B2R|
⟨|f − µun|s

2θd
d+2θ 1B2R

⟩.

Fix some R, say, R = 1. We consider equally spaced grid 1
2Z

d in Rd so that the smaller balls
centered at the nodes of the grid cover Rd, apply the previous estimate on each ball, and then
sum up. We obtain a global estimate

∥∇un∥
s 2θd
d+2θ

s 2θd
d+2θ

≤ C3

∑
x∈cZd

(
1

|B2|
⟨|∇un|21B2(x)⟩

)s θd
d+2θ

+ C4∥f − µun∥
s 2θd
d+2θ

s 2θd
d+2θ

. (20.5)
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To deal with the first term in the right-hand side, we split the grid into two parts: I := {x ∈
cZd | 1

|B2|⟨|∇un|
21B2(x)⟩ > 1} and its complement Ic. For the nodes in the complement we have,

taking into account that s θd
d+2θ > 1,

∑
x∈Ic

(
1

|B2|
⟨|∇un|21B2(x)⟩

)s θd
d+2θ

≤
∑
x∈cZd

1

|B2|
⟨|∇un|21B2(x)⟩

≤ C5⟨|∇un|2⟩.

In turn, there are only finitely many nodes in I. In fact, the cardinality of I can be estimated in
terms of ⟨|∇un|2⟩:

|I| <
∑
x∈I

1

|B2|
⟨|∇un|21B2(x)⟩ ≤ C6⟨|∇un|2⟩.

So,

∑
x∈I

(
1

|B2|
⟨|∇un|21B2(x)⟩

)s θd
d+2θ

≤
∑
x∈I

(
1

|B2|
⟨|∇un|2⟩

)s θd
d+2θ

≤ C7⟨|∇un|2⟩1+s
θd

d+2θ .

We arrive at a global estimate

∥∇un∥
s 2θd
d+2θ

s 2θd
d+2θ

≤ C8

(
∥∇un∥22 + ∥∇un∥

2+s 2θd
d+2θ

2

)
+ C4∥f − µun∥

s 2θd
d+2θ

s 2θd
d+2θ

.

Step 2. Let us show that in the right-hand side of the estimate of Step 1 we have supn ∥∇un∥22 <
∞. To this end, we multiply (µ − ∆ + bn · ∇)un = f by un and integrate, obtaining µ∥un∥22 +
∥∇un∥22 + ⟨bn · ∇un, un⟩ = ⟨f, un⟩, where

⟨bn · ∇un, un⟩ = −
1

2
⟨div bn, u2n⟩ ≥ −

1

2
⟨(div bn)+, u2n⟩.

Hence, by our form-boundedness assumption on (div bn)+,(
µ−

cδ+
2

)
∥un∥22 +

(
1− δ+

2

)
∥∇un∥22 ≤ ⟨f, un⟩. (20.6)

So, applying the quadratic inequality in the right-hand side, we arrive at (µ − cδ+
2 −

1
2)∥un∥

2
2 +

(1− δ+
2 )∥∇un∥22 ≤ 1

2∥f∥
2
2. Since δ+ < 2, supn ∥∇un∥22 <∞ for µ ≥ µ0 :=

cδ+
2 + 1

2 .

Step 3. Next, ∥un∥2 ≤ C∥f∥2 and a priori bound ∥un∥∞ ≤ ∥f∥∞ yield supn ∥un∥s 2θd
d+2θ

< ∞.
Hence supn ∥f − µun∥2s 2θd

d+2θ

<∞.

Steps 1-3 give us the sought gradient bound supn ∥∇un∥s 2θd
d+2θ

<∞, which thus ends the proof.
□
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Appendix A. Proof of Lemma 10.1

We estimate

(1 + |x|r)µ(µ−∆)−1∇ig(x) = µ

ˆ ∞

0

ˆ
Rd

e−µs(4πs)−
d
2 (1 + |x|r)e−

|x−y|2
4s ∇ig(y)dyds (A.1)

as follows. For all µ ≥ 1, provided that 1 ≤ s <∞,

e−µs(4πs)−
d
2

∣∣(1 + |x|r)e− |x−y|2
4s ∇ig(y)

∣∣ ≤ CRe−c1µs(4πs)− d
2 e−

|x−y|2
c2s |∇ig(y)| (A.2)

for some c2 > 4, 0 < c1 < 1. To see this, it suffices to show that

e−µs(4πs)−
d
2 (1 + |x|r)e−

|x|2
4s ≤ Ce−c1µs(4πs)− d

2 e−
|x|2
c2s , x ∈ Rd, s ≥ 1, (A.3)

since y varies only in BR, and the sought estimate is non-trivial when |x| ≫ R. Inequality (A.3)
reduces to

e−γ1µs(1 + |x|r)e−
|x|2
γ2s ≤ C

for 0 < γ1 < 1 and γ2 > 4 (γ1 = 1− c1, 1
γ2

= 1
4 −

1
c2

). So, denoting x′ = x√
s
, we obtain for µ ≥ 1,

for all x′ ∈ Rd, s ≥ 1,

e−γ1µs(1 + |x|r)e−
|x|2
γ2s ≤ e−γ1µss r

2 (1 + |x′|d+1)e−
|x′|2
γ2

≤ Ce−
γ1
2 µse−

|x′|2
2γ2 ≤ C,

which gives us the previous estimate and hence (A.3). We thus have (A.2) for all 1 ≤ s < ∞.
Note that (A.2) is trivial for 0 < s < 1. So, armed with (A.2) for all 0 < s < ∞, we estimate
(A.1):

µ

ˆ ∞

0

ˆ
Rd

e−µs(4πs)−
d
2 (1 + |x|r)e−

|x−y|2
4s |∇ig(y)|dyds ≤ cRµ(cµ−∆)−1|∇ig|(x), c = 4c1c

−1
2 ,

i.e. we have obtained (10.12). □

Appendix B. Vanishing of stream matrix at infinity

Lemma B.1. Assume that q ∈ BMO−1 has compact support in B1(0). Then we can find a
stream matrix Q = −Q⊤ ∈ [BMO]d×d for q, i.e. q = ∇Q, that decays polynomially at infinity:

|Q(x)| ≤ CR|x|−d+2 ∀ |x| ≥ R > 2.

It suffices carry out the proof for scalar distributions. Recall that a tempered distribution
h ∈ S ′ belongs to BMO−1 if and only if

sup
x∈Rd,R>0

1

|BR|

ˆ
BR(x)

ˆ R2

0

|et∆h|2dtdy <∞.

Now, given h ∈ BMO−1, one can find a vector field H = (Hj)
d
j=1 ∈ [BMO]d such that

h = divH

by arguing as follows (see [KT]). Put

hkj := ∇k∇j(−∆)−1h.
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By [KT, Lemma 4.1], ∥hkj∥BMO−1 ≤ ∥h∥BMO−1 . For each fixed 1 ≤ j ≤ d, we have∇rhkj = ∇khrj
for all 1 ≤ k, r ≤ d, i.e.h·j is curl-free. Therefore, there exists Hj such that ∇Hj = h·j , e.g. take

Hj = (−∆)−1div h·j . (B.1)

This Hj ∈ BMO by the Carleson’s characterization of BMO (Section 2). We have ∇jHj = hjj ,
hence

divH ≡
d∑
j=1

∇jHj =
d∑
k=1

hjj = h.

Proof of Lemma B.1. Assume that h ∈ BMO−1 has compact support in B1(0). We will show
that, by following the above procedure, we obtain a “primitive” vector field H for h which decays
at infinity as |x|−d+2. Indeed, since h has compact support, hkj(x) = O((1 + |x|)−d) as |x| → ∞,
and so div h·j(x) = O((1 + |x|)−d−1). Therefore, by (B.1),

|Hj | ≤ C(−∆)−1(1 + | · |)−d−1.

Invoking the Sobolev embedding property of (−∆)−1, we obtain that

(−∆)−1(1 + | · |)−d−1 ∈ L
d

d−2 .

So, given that (−∆)−1(1 + | · |)−d−1 is a bounded rotationally-invariant function, we obtain the
sought polynomial rate of decay of (−∆)−1(1 + | · |)−d−1 and hence of Hj . (It is also not difficult
to estimate the rate of decay of (−∆)−1(1 + | · |)−d−1 directly.) □

Appendix C. Adams’ estimates

The following are special cases of estimates proved by D.R.Adams. Let V ≥ 0.

Lemma C.1 ([A1, Theorem 7.3]). Let 0 < α < d, 1 < q <∞. Let s > 1. If

sup
x∈Rd,r>0

rαq
(

1

|Br|
〈
V s1Br(x)

〉) 1
s

<∞,

then, for all φ ∈ S,
∥V

1
qφ∥q ≤ C∥(−∆)

α
2 φ∥q.

Lemma C.2 ([A2]). Let 1 < p < q <∞, p < d. Then

∥V
1
qφ∥q ≤ C∥(−∆)

1
2φ∥p,

if and only if
sup

x∈Rd,r>0

r−q(
d
p−1)〈V 1Br(x)

〉
<∞.

Thus, Morrey class is responsible for the Lp(Rd, dx) → Lq(Rd, V dx), p < q, estimates. It is
only sufficient for the Lq(Rd, dx) → Lq(Rd, V dx) estimates (already the larger Chang-Wilson-
Wolff class shows that Morrey class is not necessary, see Section 3). In turn, the Lq(Rd, dx) →
Lq(Rd, V dx) estimates can be used e.g. to prove weak well-posedness of SDEs via (7.6), see Section
7.
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Appendix D. Multiplicative form-boundedness and Morrey class M1

The following result was proved in [M, Theorem 1.4.7]. We reproduce the proof for reader’s
convenience.

Proposition D.1. Let b ∈ [L1
loc]

d. Then

⟨|b|φ,φ⟩ ≤ δ∥∇φ∥2∥φ∥2 ∀φ ∈ C∞
c (Rd) (D.1)

if and only if

⟨|b|1Br(x)⟩ ≤ Kr
d−1 (D.2)

for some constant K independent of r > 0 and x ∈ Rd (then K is proportional to δ).

In other words, b ∈MFδ with cδ = 0 if and only if |b| belongs to the Morrey class M1.

Proof of Proposition D.1. Define weighted Lebesgue norm over ball Br(x):

∥φ∥qLq(Br(x),|b|) :=

ˆ
Br(x)

|φ(y)|q|b(y)|dy.

Define analogously Lq(Rd, |b|). D.R. Adams’ Lemma C.2 will play a crucial role in the proof.

Proof of (D.2)⇒ (D.1). So, we assume that (D.2) holds, and prove the multiplicative inequality
(D.1).

Lemma D.1. For every φ ∈ C(Br),

∥φ∥L2(Br,|b|) ≤ C2

(
r

1
2 ∥∇φ∥L2(Br) + r−

1
2 ∥φ∥L2(Br)

)
, (D.3)

for constant C2 independent of φ or r.

Proof. Any function φ ∈ C∞(B1) can be extended to a function in C1
c (B2), which we still denote,

with some abuse of notation, by φ, so that

∥∇φ∥L2(B2) ≤ C1

(
φ∥L2(B1) + ∥∇φ∥L2(B1)

)
,

where C1 does not depend on φ. After rescaling, we obtain

∥∇φ∥L2(B2r) ≤ C
(
∥∇φ∥L2(Br) + r−1∥φ∥L2(Br)

)
. (D.4)

Now that the integrals over Br do not depend on the choice of the extension of φ. The integrals
over B2rwhich do depend on the choice of the extension, like the one in the left-hand side of the
previous inequality, will appear below, but only at the intermediate steps, and will not appear in
the final estimates.

Now, put q = 2d−1
d−2 . Then our hypothesis b ∈ M1 allows us to apply Lemma C.2 with thus

selected q and p = 2. For p = 2, we have ∥(−∆)
1
2u∥2 = ∥∇u∥2. So,(

∥φ∥Lq(Br,|b|) ≤
)
∥φ∥Lq(B2r,|b|) ≤ C∥∇φ∥L2(B2r), (D.5)

where, of course, it is crucial that φ has support in the open ball B2r, so integrating over Rd is
equivalent to integrating over B2r.

By Hölder’s inequality,

∥φ∥L2(Br,|b|) ≤ ⟨|b|1Br⟩
1
2−

1
q ∥φ∥Lq(Br,|b|), (D.6)

where 1
2 −

1
q = 1

2
1
d−1 .
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Finally, assemblying estimates (D.6)-(D.4) and using our hypothesis (D.2) on |b|, we arrive at

∥φ∥L2(Br,|b|) ≤ ⟨|b|1Br⟩
1
2−

1
q ∥φ∥Lq(Br,|b|) ≤ CK

1
2

1
d−1 r

1
2 ∥∇φ∥L2(B2r)

≤ C2

(
r

1
2 ∥∇φ∥L2(Br) + r−

1
2 ∥φ∥L2(Br)

)
,

i.e. we have proved (D.3). □

We are in position to complete the proof of implication (D.2) ⇒ (D.1). Fix some r0 > 0, and
do the following for every x ∈ Rd:

– If r0∥∇φ∥L2(Br0 (x))
≥ ∥φ∥L2(Br0 (x))

, then from (D.3)

∥φ∥L2(Br0 (x),|b|) ≤ C2

(
r

1
2
0 ∥∇φ∥L2(Br0 (x))

+ ∥∇φ∥
1
2

L2(Br0 (x))
∥φ∥

1
2

L2(Br0 (x))

)
≤ C2

(
r

1
2
0 ∥∇φ∥L2(Br0

(x)) + ∥∇φ∥
1
2

L2(Br0 (x))
∥φ∥

1
2

L2(Br0 (x))

)
. (D.7)

- Otherwise, increase r until one reaches equality r∥∇φ∥L2(Br(x)) = ∥φ∥L2(Br(x)), in which case
(D.3) yields

∥φ∥L2(Br(x),|b|) ≤ C2

(
∥∇φ∥

1
2

L2(Br(x))
∥φ∥

1
2

L2(Br(x))
+ ∥∇φ∥

1
2

L2(Br(x))
∥φ∥

1
2

L2(Br(x))

)
= 2C2∥∇φ∥

1
2

L2(Br(x))
∥φ∥

1
2

L2(Br(x))
. (D.8)

In any case, we obtain, for every x ∈ Rd and r = r(x) (either r0 or increased r, depending on x):

∥φ∥L2(Br(x),|b|) ≤ 2C2

(
∥∇φ∥

1
2

L2(Br(x))
∥φ∥

1
2

L2(Br(x))
+ r

1
2
0 ∥∇φ∥L2(Br0 (x))

)
. (D.9)

Our goal now is to turn local estimate (D.9) into the multiplicative inequality (D.1). So, we
cover supp|b| with balls {Br(x)(x)}. Using [M, Theorem 1.2.1], i.e. a variant of the Besicovich
covering theorem, one can extract at most countable subcover of finite multiplicity M = M(d).
We emphasize that while the covering depends on φ, the multiplicity M does not. Let {Bi} be
this sub-cover. Squaring (D.9) (considered over each ball Bi in the sub-cover), summing up in i,
and using Hölder inequality, we have:

∥φ∥2L2(Rd,|b|) ≤M
∑
i

∥φ∥2L2(Bi,|b|)

≤ C3

(∑
i

∥∇φ∥L2(Bi)∥φ∥L2(Bi) + r0
∑
i

∥∇φ∥2L2(Bi)

)

≤ C3

(∑
i

∥∇φ∥2L2(Bi)

) 1
2
(∑

i

∥φ∥2L2(Bi)

) 1
2

+ r0
∑
i

∥∇φ∥2L2(Bi)

 .

By Jensen’s inequality,(∑
i

∥∇φ∥2L2(Bi)

)1/2 ≤∑
i

∥∇φ∥L2(Bi) ≤M∥∇φ∥2

and similarly for ∥φ∥2, which gives us

∥φ∥2L2(Rd,|b|) ≤M
2C3(∥∇φ∥2∥φ∥2 + r0∥∇φ∥22)

Since r0 was fixed arbitrarily, letting r0 ↓ 0 yields the multiplicative inequality (D.1).
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The reverse direction (D.1) ⇒ (D.2) is easier. Choosing in (D.1) test functions φ = φr ∈
C∞
c (Br(x)) such that ∥∇φ∥2 ≤ cr

d−2
2 , ∥φ∥2 ≤ crd/2, we obtain ⟨|b|,1Br(x)⟩ ≤ Crd−1, i.e. b ∈M1.

This completes the proof. □
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