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FELLER GENERATORS WITH SINGULAR DRIFTS IN THE CRITICAL

RANGE

D.KINZEBULATOV AND YU.A. SEMËNOV

Abstract. We consider diffusion operator −∆+ b · ∇ in R
d, d ≥ 3, with drift b in a large class

of locally unbounded vector fields that can have critical-order singularities. Covering the entire
range of admissible magnitudes of singularities of b, we construct a strongly continuous Feller
semigroup on the space of continuous functions vanishing at infinity, thus completing a number
of results on well-posedness of SDEs with singular drifts. Our approach uses De Giorgi’s method
ran in Lp for p sufficiently large, hence the gain in the assumptions on singular drift.

For the critical borderline value of the magnitude of singularities of b, we construct a strongly
continuous semigroup in a “critical” Orlicz space on R

d whose topology is stronger than the
topology of Lp for any 2 ≤ p < ∞ but is slightly weaker than that of L∞.

1. Introduction

1. The paper concerns with the following question: what are the minimal assumptions on a locally

unbounded vector field b : Rd → R
d, d ≥ 3, such that operator −∆+b·∇ generates a strongly continuous

Feller semigroup? We deal with the drift singularities that substantially affect the behaviour of the

heat kernel of −∆+ b ·∇. For instance, the heat kernel can vanish or blow up at some points in space.

However, the Feller semigroup structure ensures that the corresponding strong Markov process exists

and has a number of important properties that make it of practical interest (e.g. properties related to

continuity, existence of invariant measure, solvability of a martingale problem [7, 10]). It is almost

impossible to survey the literature on Feller generators. We only mention some results related to

the diffusion operators with irregular drifts, including drifts having strong growth at infinity [28, 29],

generators of distorted Brownian motion [2, 4, 5], general locally unbounded drifts b [3, 14, 26, 27].

See also [6, 30, 31].

The question of what local singularities of drift b are admissible has two dimensions: the order of

singularities (for example, for the model singular drift b(x) =
√
δ d−2

2 |x|−αx the order of singularities

is determined by α− 1 > 0) and their magnitude (i.e. factor δ in the previous formula if α is chosen to

be critical, which, as can be seen by rescaling the equation, is α = 2). The following is a large class of

vector fields that can have critical-order singularities:

Definition 1. A Borel measurable vector field b : Rd → R
d is said to be form-bounded if

‖bϕ‖22 ≤ δ‖∇ϕ‖22 + c(δ)‖ϕ‖22 ∀ϕ ∈W 1,2 (1)

for some constants δ and c(δ) (here and in what follows, ‖ · ‖p := ‖ · ‖Lp , W 1,2 is the Sobolev space of

functions with square integrable derivatives). Condition (1) is written as b ∈ Fδ.
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2 D.KINZEBULATOV AND YU.A. SEMËNOV

The form-boundedness with form-bound δ < 1 is a classical condition on |b|: it provides coercivity

of the corresponding to −∆+ b · ∇ quadratic form in L2.

Constant δ measures the magnitude of singularities of the vector field b. If δ > 4, then there are

various counterexamples to the regularity theory of −∆+ b · ∇ and to the theory of the corresponding

diffusion process. We explain below that the critical threshold value of δ is 4. The present paper

concerns with the value of δ going up to (and including) δ = 4.

2. There is a plethora of results devoted to verifying inclusion b ∈ Fδ [1, 8, 9, 11]. Here are

some examples of sub-classes of Fδ that appear in the literature on PDEs and stochastic differential

equations (SDEs). For example, class Fδ contains vector fields b from [Ld +L∞]d (with δ that can be

chosen arbitrarily small), weak Ld class, which includes

b(x) = ±
√
δ
d− 2

2
|x|−2x ∈ Fδ (but not in any Fδ′ with δ′ < δ), (2)

and, more generally, the scaling-invariant Morrey class

‖b‖M2+ε
:= sup

r>0,x∈Rd

r

(

1

|Br|

∫

Br(x)

|b|2+εdx

)
1

2+ε

<∞

where Br(x) is the ball of radius r centered at x, and ε > 0 is fixed arbitrarily small, so δ = C‖b‖M2+ε

for appropriate constant C = C(ε) [11]. Some other examples can be found, in particular, in [17, 25].

3. It was proved in [24], using De Giorgi’s iterations in Lp, p > 2
2−

√
δ
, and a compactness argument,

that if b ∈ Fδ with δ < 4, then the corresponding to −∆+ b · ∇ SDE

Xt = x−
√
δ
d− 2

2

∫ t

0

b(Xs)ds+
√
2Bt, (3)

where Bt is the d-dimensional Brownian motion, has a martingale solution for every initial point

x ∈ R
d (see Theorem 2.2 below). This is important in light of the following counterexample: if we take

a particular form-bounded singular vector field b(x) =
√
δ d−2

2 1x6=0|x|−2x introducing strong attraction

of Xt to the origin, then, whenever

δ > 4

(

d

d− 2

)2

,

the corresponding SDE does not have a weak solution departing from x = 0. Thus, the constraint

δ < 4 in [24] is sharp at least asymptotically (i.e. in high dimensions). It should also be added that if

δ > 4, then for every initial point x 6= 0 the corresponding solution of (3) (which, one can prove, still

exists locally in time) arrives to the origin with positive probability.

We explain where does the condition p > 2
2−

√
δ

come from in the end of this introduction. Let us

add that it was known for some time that −∆+ b · ∇, b ∈ Fδ, δ < 4, generates a strongly continuous

semigroup in Lp, p > 2
2−

√
δ

[26]. Although this semigroup is an L∞ contraction and p can be taken

arbitrarily large, this result on its own does not provide a path to constructing strongly continuous

Feller semigroup.

There already exist various methods for constructing Feller semigroup for −∆+ b · ∇ with b ∈ Fδ

with some small δ. The first paper where such construction was carried out for δ < 1 ∧ ( 2
d−2)

2, using

Moser-type iterations, was [26]. [14] gave a different approach via fractional resolvent representations

in Lq, q > d− 2, to constructing the Feller generator, reaching the same condition on δ as in [26], and
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also providing additional information about regularity of the Feller semigroup, cf. Theorem 2.1(v). All

these results require δ ≪ 1. The reasons for this is that the argument in [26] uses rather strong gradient

bound on solutions of the corresponding elliptic equations, while the construction in [14] automatically

provides such gradient bounds, so the Feller semigroup arises as a by-product of this construction (a

more detailed discussion can be found in survey [17]).

The question of what happens with operator −∆+ b · ∇ and the corresponding parabolic equation

in the critical case δ = 4 was addressed in [16]. It turned out one still has a strongly continuous

Markov semigroup but in Orlicz space with gauge function cosh−1, moreover, the corresponding

elliptic equation has a unique weak solution, and a variant of energy inequality holds. The local

topology of this Orlicz space is stronger than the local topology of Lp with any finite p, but is weaker

than the topology of L∞ ([16] dealt with the dynamics on the torus R
d/Zd or, rather on a compact

Riemannian manifold). The result of [16] was summarized there as follows: strengthening the topology

of the space,where the semigroup of −∆+ b · ∇ is considered, allows to relax the assumptions on δ1.

In the same vein, the Feller semigroup for −∆+ b ·∇, which is acting in a space with an even stronger

local topology (i.e. space C∞ of continuous functions vanishing at infinity with the sup-norm), should

be defined for all values of δ going up to 4. Below we show that this is indeed the case for all δ < 4.

Our main results in this paper, stated briefly, are as follows.

Theorem. Let b ∈ Fδ. The following are true:

Theorem 2.1: If δ < 4, then the constructed in [24] probability measures {Px}x∈Rd solving the

martingale problem for (3) in fact determine a Feller semigroup. Its generator is an appropriate

realization of formal operator −∆ + b · ∇ in C∞. This Feller semigroup is unique among Feller

semigroups that can be constructed via an approximation of b by bounded smooth vector fields that do

not increase form-bound δ and constant c(δ).

Theorem 3.1: If δ ≤ 4 and b satisfies some additional constraints on its behaviour outside of a large

ball (e.g. bounded), then there is an analogous semigroup theory of −∆+ b · ∇ but in the Orlicz space

with gauge function cosh−1 on R
d.

The proof of Theorem 2.1 uses, in particular, some regularity results for non-homogeneous elliptic

equations obtained in [19] by means of De Giorgi’s method ran in Lp, and some convergence theorems

obtained in [26]. This allows to verify conditions of the Trotter approximation theorem in C∞.

Theorem 3.1 is proved directly, by verifying Cauchy’s criterion for solutions of the approximating

parabolic equations. Let us add that in [16] the volume of the torus enters the estimates, so simply

blowing it up, in order to work on R
d, is not an option. We address this in the present paper (Theorem

3.1) by working carefully with appropriate weights.

Theorem 3.1 admits more or less direct extension to time-inhomogeneous form-bounded vector

fields. On the other hand, the proof of Theorem 2.1 so far uses in an essential manner (via Trotter’s

approximation theorem) the fact that we are working with elliptic equations, so it is limited to time-

homogeneous b = b(x).

1Retrospectively, condition p > 2

2−
√

δ
could be interpreted as saying the same thing, but, since semigroup

et(∆−b·∇) in Lp is automatically strongly continuous in all Lq, p < q < ∞ by the interpolation with the L∞

contraction estimate, the link between the strength of topology and the value of δ was somewhat less transparent
in the Lp setting.
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The literature on the regularity theory of diffusion operator −∆ + b · ∇ and on the corresponding

SDE also deals with larger classes of singular vector fields b, i.e. those that contain Fδ , such as the class

of weakly form-bounded vector fields [15, 22] or (basically the largest possible scaling-invariant time-

inhomogeneous) Morrey class [18]. However, in the cited papers it is essential that the form-bound δ

is smaller than a dimension-dependent constant ≪ 1, and it is not yet clear what is the critical value

of δ for these classes of vector fields. There is also the Kato class of vector fields that contains drifts

having strong hypersurface singularities, see e.g. [3], but, on the other hand, the Kato class does not

even contain |b| ∈ Ld and itself is contained in the class of weakly form-bounded vector fields.

4. As was mentioned above, if b ∈ Fδ, δ < 4, then one can construct a quasi contraction strongly

continuous Markov semigroup e−tΛp in Lp, Λp ⊃ −∆ + b · ∇, p ∈] 2

2−
√
δ
,∞[. We proved in [25] that

the last statement remains valid for all p in a larger interval

Ic := [
2

2−
√
δ
,∞[ (“interval of quasi contractive solvability”),

moreover, the corresponding semigroup inherits many important properties of the heat semigroup et∆

such as Lp → Lq bounds and holomorphy. The interval of quasi contractive solvability Ic can be

further extended to the interval of quasi bounded solvability

Im :=]
2

2− d−2
d

√
δ
,∞[,

i.e. for all p ∈ Im one still has a strongly continuous semigroup e−tΛp , Λp ⊃ −∆ + b · ∇, but now it

satisfies a weaker bound

‖e−tΛp‖p ≤Mp,δe
λp,δt‖f‖p for some Mp,δ > 1.

The interval of quasi bounded solvability Im is sharp. See [25]. We note that if δ ↑ 4, then, while

the interval of quasi contractive solvability Ic tends to the empty set, the interval of quasi bounded

solvability Im tends to a non-empty interval ]d2 ,∞[. That said, as δ ↑ 4, one has Mp,δ ↑ ∞, so this

result still does not allow to include δ = 4.

Where does the condition δ < 4, p ∈ Ic, come from can be seen from the following elementary

calculation. Let b ∈ Fδ be additionally bounded and smooth. Consider Cauchy problem (∂t −∆+ b ·
∇)u = 0, u(0) = f ∈ C∞

c . Without loss of generality, f ≥ 0, and so u ≥ 0. Set v = e−λtu, λ > 0.

Multiply equation (λ+ ∂t −∆+ b · ∇)v = 0 by vp−1 and integrate by parts:

λ〈vp〉+ 1

p
〈∂tvp〉+

4(p− 1)

p2
〈|∇v p

2 |2〉+ 2

p
〈b · ∇v p

2 , v
p
2 〉 = 0,

(〈·〉 denotes the integration over R
d, 〈·, ·〉 is the inner product in L2 over reals).

Applying quadratic inequality in the last term, we arrive at

pλ〈vp〉+ 〈∂tvp〉+
4(p− 1)

p
〈|∇v p

2 |2〉 ≤ α〈|b|2, vp〉+ 1

α
〈|∇v p

2 |2〉

Now, applying b ∈ Fδ and selecting α = 1√
δ
, we obtain

[

pλ− c(δ)√
δ

]

〈vp〉+ 〈∂tvp〉+
[

4(p− 1)

p
− 2

√
δ

]

〈|∇v p
2 |2〉 ≤ 0, λ ≥ c(δ)

p
√
δ
.

In order to keep the dispersion term non-negative, one needs 4(p−1)
p − 2

√
δ ≥ 0, i.e. δ < 4 and p ∈ Ic,

which then yields ‖u‖p ≤ e
c(δ)t

p
√

δ ‖f‖p.
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Notations. Br(x) denotes the open ball of radius r centered at x ∈ R
d, Br := Br(0).

Let B(X,Y ) denote the space of bounded linear operators between Banach spaces X → Y , endowed

with the operator norm ‖ · ‖X→Y . B(X) := B(X,X).

The space of d-dimensional vectors with entries in X is denoted by [X ]d.

We write T = s-Y - limn Tn for T , Tn ∈ B(X,Y ) if

lim
n

‖Tf − Tnf‖Y = 0 for every f ∈ X.

Put Lp = Lp(Rd), W 1,p =W 1,p(Rd). Set ‖ · ‖p := ‖ · ‖Lp and ‖ · ‖p→q := ‖ · ‖Lp→Lq .

Put

〈f, g〉 = 〈fg〉 :=
∫

Rd

fgdx

(all functions considered in this paper are real-valued).

Cc (C∞
c ) denotes the space of continuous (smooth) functions on R

d having compact support.

C∞ := {f ∈ C(Rd) | limx→∞ f(x) = 0} endowed with the sup-norm.

Set

γ(x) :=

{

c exp
(

1
|x|2−1

)

if |x| < 1,

0, if |x| > 1,

where c is adjusted to
∫

Rd γ(x)dx = 1, and put γε(x) :=
1
εd
γ
(

x
ε

)

, ε > 0, x ∈ R
d. Define the Friedrichs

mollifier of a function h ∈ L1
loc (or a vector field with entries in L1

loc) by

Eεh := γε ∗ h.

2. Feller semigroup in regime δ < 4

For a given b ∈ Fδ, define bn := Eεnb (εn ↓ 0), where Eε is the Friedrichs mollifier. Then bn are

bounded, smooth, converge to b component-wise locally in L2
loc, and do not increase the form-bound

δ and constant c(δ) of b, i.e.

‖bnϕ‖22 ≤ δ‖∇ϕ‖22 + c(δ)‖ϕ‖22 ∀ϕ ∈ W 1,2

(see e.g. [23] for the proof). By the classical theory, for every n ≥ 1, Cauchy problem

(∂t + Λn)un = 0, un(0) = f ∈ C∞,

where Λn := −∆+ bn · ∇, D(Λn) := (1−∆)−1C∞,

has unique solution un(t, x) =: e−tΛnf(x), and e−tΛn is a strongly continuous Feller semigroup on C∞.

Put ρx(y) := ρ(y − x), ρ(y) = (1 + κ|y|2)− d
2−1, y ∈ R

d.

Theorem 2.1 (1st Main Result). Let b ∈ Fδ with δ < 4. Then

(i) The limit

s-C∞- lim
n
e−tΛn (loc. uniformly in t ≥ 0)
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exists and is a strongly continuous Feller semigroup on C∞, say, e−tΛ. Its generator Λ is an appropriate

operator realization of the formal operator −∆+ b · ∇ in C∞ (in general, no longer an algebraic sum

of −∆ and b · ∇, see remark after the theorem regarding domain D(Λ)).

(ii) Feller semigroup e−tΛ is unique in the sense of approximations, i.e. does not depend on the

choice of a bounded smooth approximation bn of b in (i), as long as bn converge to b in [L2
loc]

d and do

not increase the form-bound δ of b and constant c(δ).

(iii) Strong Feller property for resolvent:

‖(µ+Λ)−1f‖C∞ ≤ K sup
x∈ 1

2Z
d

(

(µ− µ1)
− 1

pθ 〈|f |pθρx〉
1
pθ + µ−β

p 〈|f |pθ′

ρx〉
1

pθ′

)

, f ∈ Lpθ ∩ Lpθ′

([19])

for fixed 1 < θ < d
d−2 and p ≥ 2 such that p > 2

2−
√
δ
, for all µ strictly greater than certain µ1.

In particular, taking into account that 〈ρx〉 < ∞, we have, appealing to the Dominated convergence

theorem,

‖(µ+Λ)−1f‖C∞ ≤ C‖f‖∞, f ∈ L∞.

(iv) For all 2
2−

√
δ
≤ p ≤ q <∞,

‖e−tΛp‖p→q ≤ Cδ,de
ωptt−

d
2 (

1
p− 1

q ), ωp =
c(δ)

2(p− 1)
. ([25, 30])

(v) If additionally δ < 4
(d−2)2 ∧ 1, then the resolvent u = (µ+Λ)−1f satisfies, for every q ∈ [2, 2√

δ
[,

‖∇u‖q ≤ K1(µ− µ0)
− 1

2 ‖f‖q , ‖∇|∇u| q2 ‖2 ≤ K2(µ− µ0)
− 1

2+
1
q ‖f‖q , ([26])

and

‖(µ−∆)
1
2+

1
s u‖q ≤ K‖(µ−∆)−

1
2+

1
r f‖q, for all 2 ≤ r < q < s ([14])

for all µ greater than some generic µ0. In particular, we can select q > d − 2 (and, in the second

assertion, s close to q) so that, by the Sobolev embedding theorem, the elements on the domain D(Λ)

are Hölder continuous.

Remarks. 1. A crucial feature of assertions (i)-(iii) is that they cover the entire range 0 < δ < 4 of

magnitudes of singularities of b.

2. Assertions (iv), (v) are included for the sake of completeness. Assertion (v) demonstrates that as

δ becomes smaller the information that we have about the Feller generator Λ becomes more detailed.

3. The Feller semigroup e−tΛ from Theorem 2.1 determines probability measures {Px}x∈Rd on the

canonical space of càdlàg trajectories ωt, i.e.

e−tΛf(x) = EPx
f(ωt), f ∈ C∞.

By a classical result, the process

t 7→ u(ωt)− u(x) +

∫ t

0

Λu(ωs)ds, u ∈ D(Λ), ω is càdlàg,

is a Px-martingale. That said, there is no description of the domain D(Λ) of generator Λ even if

|b| ∈ L∞ with compact support; one can be certain that C∞
c 6⊂ D(Λ). So, for the continuous martingale

characterization of Px, we have the following results.
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Theorem 2.2 ([19, 24]). Let b ∈ Fδ with δ < 4.

1) [24] For every x ∈ R
d there exists a martingale solution of SDE (3), i.e. a probability measure

Px on the canonical space of continuous trajectories
(

C([0, 1],Rd),Bt = σ{ωs | 0 ≤ s ≤ t}
)

, such that

Px[ω0 = x] = 1,

Ex

∫ t

0

|b(ωs)| <∞, 0 < t ≤ 1 (Ex := EPx
)

and, for every ϕ ∈ C2
2 , the process

Mϕ
t := ϕ(ωt)− ϕ(ω0) +

∫ t

0

(−∆ϕ+ b · ∇ϕ)(s, ωs)ds

is a continuous martingale, so

Ex[M
ϕ
t1

| Bt0 ] =Mϕ
t0

for all 0 ≤ t0 < t1 ≤ 1 Px-a.s.

2) [19] The probability measures {Px}x∈Rd are unique in the sense of approximation (Theorem

2.1(ii)) and constitute a strong Markov family.

The probability measures from Theorems 2.1 and 2.2 are obtained via the same approximation of b by

bn and thus coincide. Moreover, as follows from Theorem 2.1, the probability measures {Px}x∈Rd from

Theorem 2.2 determine a strongly continuous Feller semigroup on C∞ by formula e−tΛf(x) := EPx
f(x).

Together with the conditional weak uniqueness results of [18, 20] for SDE (3) and the strong well-

posedness result of [21] (via the approach of Röckner-Zhao), we consider Theorem 2.1 as tentatively

completing the description of the diffusion process with form-bounded drift b for δ < 4.

3. Semigroup in Orlicz space in the critical regime δ = 4

Here we treat the borderline case δ = 4 which forces us to consider the problem in a suitable Orlicz

space. Namely, put

Φ(t) = cosh t− 1, cosh t :=
et + e−t

2
, t ∈ R.

Clearly, this function is convex, Φ(t) = Φ(|t|), Φ(t)/t → 0 as t → 0, Φ(t)/t → ∞ as t → ∞, and

Φ(t) = 0 if and only if t = 0. So the space LΦ = LΦ(R
d) of real-valued Ld measurable functions on

R
d endowed with the gauge norm

‖f‖Φ = inf{c > 0 | 〈cosh f
c
− 1〉 ≤ 1}

is a Banach space (recall that 〈·〉 denotes integration over R
d).

Note that

Φ(t) =

∫ t

0

sinh τdτ, Φ(t) =

∞
∑

m=1

t2m

(2m)!
and

〈

Φ
( f

‖f‖Φ

)〉

≤ 1.

In particular,

‖f‖2m ≤
(

(2m)!
)

1
2m ‖f‖Φ, m = 1, 2, . . . , (4)
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so

f ∈ LΦ ⇒ f ∈ Lp and lim
n

‖fn − f‖Φ = 0 ⇒ lim
n

‖fn − f‖p = 0

for each p ∈ [2,∞[ and fn ∈ LΦ.

Definition 2. Let LΦ denote the closure of C∞
c with respect to gauge norm ‖ · ‖Φ. This is our Orlicz

space.

It follows from (4) that locally the topology in LΦ is weaker than the topology in L∞. On the other

hand, the functions in LΦ must vanish at infinity sufficiently rapidly, i.e. in particular, no slower than

functions in L2. We also note that S ⊂ LΦ.

Theorem 3.1 (2nd Main Result). Assume that b ∈ F4, i.e.

‖bϕ‖22 ≤ 4‖∇ϕ‖22 + c(4)‖ϕ‖22 ∀ϕ ∈ W 1,2 (5)

and that b has compact support:

sprt b ⊂ BR1
for some R1 <∞.

Let {bn}n≥1 be any sequence of C∞ smooth vector fields that satisfy (5) with the same constants as b

and are such that

lim
n→∞

‖b− bn‖2 = 0 and ∪n≥n0
sprt bn ⊂ BR for some R, where R1 < R <∞ and n0 ≫ 1

(e.g. one can take bn := Eεnb, εn ↓ 0, where Eε is the Friedrichs mollifier. Then sprt bn ⊂ BR1+
1
n
).

Let un = un(t, x) denote the classical solution to Cauchy problem

(∂t −∆+ bn · ∇)un = 0, un(0) = f ∈ C∞
c .

Put

T t
nf := un(t), t ≥ 0.

The following are true:

(i) For every n ≥ 1,

T t
nf ∈ LΦ and ‖T t

nf‖Φ ≤ eωt‖f‖Φ, f ∈ C∞
c (Rd),

where constant ω ≥ 0 depends only on d, c(4), R.

The operators {T t
n}t≥0 extend by continuity to a positivity preserving quasi contraction strongly

continuous semigroup in LΦ, say, e−tΛn . Its generator Λn in an appropriate operator realization of

−∆+ bn · ∇ in LΦ.

(ii) The limit

s-LΦ- lim
n
e−tΛn (loc. uniformly in t ≥ 0)

exists and determines a positivity preserving quasi contraction strongly continuous semigroup in LΦ,

say, e−tΛ. For every g ∈ LΦ, u := e−tΛg satisfies u ∈ L2
loc([0,∞[,W 1,2) and is a weak solution to

parabolic equation (∂t −∆+ b · ∇)u = 0 in the sense that

−〈u, ∂tψ〉+ 〈∇u,∇ψ〉+ 〈b · ∇u, ψ〉 = 0 for all ψ ∈ C1
c (]0,∞[×R

d).

(iii) The semigroup T t is unique in the sense of approximations, i.e. does not depend on the choice

of a regularization bn of b as long as bn satisfies the above assumptions.
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3.1. Some extensions of Theorem 3.1. We can remove the assumption of the compact support of

b, but we still need some assumptions on the rate of decay of b at infinity. That is, assume that vector

field b : Rd → R
d can be represented as the sum b = b(1) + b(2) where

b(1) ∈ F4, b(2) ∈ [L∞ ∩ L2]d

are such that

sprt b(1) ⊂ BR and sprt b(1) ∩ sprt b(2) = ∅.

Set b
(1)
n = 1|b(1)|≤nb

(1) and put bn := b
(1)
n + b(2).

Theorem 3.2. Let b be as above. Then the assertions of Theorem 3.1 remain valid with the following

modification: for every n ≥ 1,

‖T t
nf‖Φ ≤ e(λ+G)t‖f‖Φ, t ≥ 0,

where λ = 2−1c5 + 2−1‖b(2)‖2∞ and G = c5〈1BaR1
〉 + ‖b(2)‖22, c5 = c(4) + 4(d − 1)R−2

1 , a = 1 + θ−1

(constants c5, a and θ are from the proof of Theorem 3.1).

The previous theorem applies to vector field

b(x) = (d− 2)1BR
(x)|x|−2x+ C1Bc

R
(x)|x|−α−1x, α >

d

2
,

where R > 0, C < ∞. That said, a model example of a vector field b ∈ Fδ having critical-order

singularity at the origin and critical decay at infinity is

b(x) =

√
δ

2
(d− 2)|x|−xx (6)

(note the sign in front of
√
δ). As the previous example shows, Theorem 3.2 allows us to take δ = 4,

but it still imposes a stronger requirement, in comparison with (6), on the rate of decay of b outside

of a ball of large radius. The next theorem and the remark after address that.

Theorem 3.3. Let |b| ∈ L2, div b ∈ L1
loc. Set V = 0 ∨ div b and assume that V = V1 + V2,

V2 ∈ L∞, ‖V
1
2
1 ϕ‖22 ≤ 4‖∇ϕ‖22 + c(4)‖ϕ‖22 for all ϕ ∈ W 1,2, and sprtV1 ⊂ BR1

.

Then the assertions of Theorem 3.1 remain valid with the following modification: for every n ≥ 1,

‖T t
nf‖Φ ≤ e(λ+‖V2‖∞+G)t‖f‖Φ, t ≥ 0,

where λ = c(4) + 4(d− 1)R−2, G = 2λ〈1BaR1
〉, a = 3.

Furthermore, one can remove condition |b| ∈ L2 in Theorem 3.3 by considering b̃ = b + f, where b

satisfies the assumptions of Theorem 3.3, and |f| ∈ L∞, div f ∈ L1
loc, V3 := 0∨div f ∈ L∞. See Remark

2 after the proof of Theorem 3.3 for details. This allows to include model drift (6), i.e. take

b̃(x) = (d− 2)|x|−2x.

(Set b̃n = (d− 2)En(1B1
|x|−2x) + (d− 2)1Bc

1
|x|−2x.)

Remark 1. One can combine drifts considered in the previous theorems, e.g. one can consider drift

b+ f with b from Theorem 3.2 and f from Theorem 3.3, such that

b(1) ∈ Fδ1 , V
1
2
1 ∈ Fδ2 , δ1 + δ2 = 4.
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The main disadvantage of the previous results is that the singularities of b are contained in a bounded

set. In the next theorem we improve these results as follows.

Theorem 3.4. Let {xm} ⊂ R
d, {Rm} ⊂ R+ be such that limm |xm| = ∞ and B(xm, Rm)∩B(xk, Rk) =

∅ for all m 6= k. Let b(x) =
∑∞

m=1 b
(m)(x) be such that

sprt b(m) ⊂ B(xm, Rm), ‖b(m)ϕ‖22 ≤ δm‖∇ϕ‖22 + c(δm)‖ϕ‖22 ϕ ∈W 1,2,

∞
∑

m=1

δm = 4,

∞
∑

m=m0

(R−2
m +Rd

m)δm <∞, and

∞
∑

m=m0

(1 +Rd
m)c(δm) <∞ for some m0 >> 1.

Then all assertions of Theorem 3.1 remain valid.

4. Proof of Theorem 2.1

Assertion (i) will follow from the Trotter approximation theorem, which, applied to semigroups

{e−tΛn}n≥1 in C∞, can be formulated as follows:

Theorem 4.1 (see [13, IX.2.5]). Assume that exists µ0 > 0 independent of n such that

1) supn ‖(µ+ Λn)
−1f‖∞ ≤ µ−1‖f‖∞, µ ≥ µ0;

2) there exists s-C∞- limn(µ+Λn)
−1 for some µ ≥ µ0;

3) µ(µ+Λn)
−1 → 1 in C∞ as µ ↑ ∞ uniformly in n.

Then there exists a contraction strongly continuous semigroup e−tΛ on C∞ such that

e−tΛn → e−tΛ strongly in C∞

locally uniformly in t ≥ 0.

Condition 1) follows from the classical theory, that is, from the fact that e−tΛn are L∞ contractions.

Condition 2) is verified as follows. In view of 1), it suffices to verify the existence of the limit on f

in a countable dense subset of C∞
c . Set un := (µ+ Λn)

−1f . Fix R > 0 sufficiently large so that, by

Corollary A.1, sup
Rd\BR(0) |u| is sufficiently small uniformly in n. (To this end, we note that 〈|f |pθρx〉,

〈|f |pθ′
ρx〉 in Corollary A.1 are small if x ∈ R

d \ BR(0) for R sufficiently large, i.e.x is far away from

the support of f .) Next, applying Theorem A.1 and the Arzelà-Ascoli theorem on B̄R(0), we obtain

that there is a subsequence nk such that {unk
} converges uniformly on B̄R(0). Taking into account

the previous observation regarding smallness of |un| on R
d \ BR(0), we use the diagonal argument

to construct a subsequence unℓ
such that the limit C∞- limℓ(µ + Λnℓ

)−1f exists. Finally, using the

existence of the limit s-Lp- limn(µ+Λn)
−1f , p > 2

2−
√
δ
, see [26], we obtain that the subsequential limit

C∞- limℓ(µ+Λnℓ
)−1f does not depend on the choice of nℓ. This gives us condition 2).

Let us verify condition 3). Once again, in view of 1), it suffices to verify 3) on a dense subset of

C∞, e.g. all g ∈ C∞
c . We invoke the resolvent identity:

µ(µ+ Λn)
−1g − µ(µ−∆)−1g = µ(µ+Λn)

−1bn · ∇(µ−∆)−1g

= (µ+Λn)
−1bn · µ(µ−∆)−1∇g.

Since µ(µ−∆)−1g → g uniformly as µ→ ∞, it suffices to show the convergence

‖(µ+ Λn)
−1bn · µ(µ−∆)−1∇g‖∞ ≤ ‖(µ+Λn)

−1|bn|µ(µ−∆)−1|∇g|‖∞ → 0 (7)
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as µ→ ∞ uniformly in n. This is proved in [26, Lemma 4] under additional hypothesis |b| ∈ L2+L∞,

but the proof there can be modified to excludes this hypothesis, see [25, Lemma 4.16]. (Alternatively,

one can prove (7) using Theorem A.2 below after taking supremum in x ∈ 1
2Z

d in (12) and using the

fact that f = |µ(µ−∆)−1g| is bounded on R
d uniformly in µ.)

5. Proofs of Theorems 3.1-3.4

5.1. Proof of Theorem 3.1. (i), (ii) We have

〈∂tv + λv −∆v + bn · ∇v, ev − e−v〉 = 0 where v = e−λtun.

Let us introduce the weight function ζr(x) := η
( |x|

r

)

, where

η(t) :=











1 if t ≤ 1

(1− θ(t− 1)))
1
θ if 1 < t < 1 + θ−1, 0 < θ < 1

2

0 if 1 + θ−1 ≤ t,

Put C(r, ar) = {y ∈ R
d | r ≤ |y| ≤ ar}, a = 1 + θ−1. It is easy to check that

|∇ζr| ≤ r−1
1C(r,ar) and −∆ζr ≤ (d− 1)r−2

1C(r,ar).

1. A direct calculation yields (clearly, |∇ζM | ≤M−1, −∆v ∈ L1, |∇v| ∈ L2 ∩ L1, v ∈ L∞):

〈−∆v, ev − e−v〉 = lim
M→∞

〈−∆v, ζM (ev − e−v)〉

= lim
M→∞

(

〈|∇v|2, ζM (ev + e−v)〉+ 〈∇v, (ev − e−v)∇ζM 〉
)

= 〈|∇v|2, (ev + e−v)〉 = 〈|∇v|2, (e v
2 − e−

v
2 )2 + 2〉

= 4‖∇(e
v
2 + e−

v
2 )‖22 + 2‖∇v‖22.

Therefore,

λ〈v(ev − e−v)〉+ ∂t〈ev + e−v − 2〉+ 2‖∇v‖22 + 4‖∇(e
v
2 + e−

v
2 )‖22 + 2〈bn(e

v
2 + e−

v
2 ),∇(e

v
2 + e−

v
2 )〉 = 0,

so

λ〈v sinh v〉+ ∂t〈cosh v − 1〉+ ‖∇v‖22 + 8‖∇ cosh
v

2
‖22 ≤ 4‖bn cosh

v

2
‖2‖∇ cosh

v

2
‖2.

Using our assumption on bn, we write

‖bn cosh
v

2
‖22 = ‖bn

(

ζR cosh
v

2

)

‖22 ≤ 4‖∇
(

ζR cosh
v

2

)

‖22 + c(4)‖ζR cosh
v

2
‖22

with R such that sprt bn ⊂ BR (for this, we increase R slightly, or simply redenote R + 1
n from the

assumption on bn by R), where, setting w := cosh v
2 , we have

‖∇
(

ζR cosh
v

2

)

‖2 ≡ ‖∇(ζRw)‖22 = ‖ζR∇w‖22 + ‖w∇ζR‖22 + 〈ζR∇ζR,∇w2〉

= ‖ζR∇w‖22 − 〈ζR∆ζR, w2〉
≤ ‖ζR∇w‖22 + (d− 1)R−2〈ζRw2〉.

Therefore,

4‖bn cosh
v

2
‖2‖∇ cosh

v

2
‖2 ≤ ‖bn cosh

v

2
‖22 + 4‖∇ cosh

v

2
‖22

≤ 8‖∇ cosh
v

2
‖22 + c5〈ζRw2〉, c5 = c(4) + 4(d− 1)R−2
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and so

λ〈v sinh v〉+ ∂t〈cosh v − 1〉+ ‖∇v‖22 ≤ c5‖1BaR
cosh

v

2
‖22.

Since v sinh v ≥ cosh v − 1 = 2(cosh2 v
2 − 1),

(λ− 2−1c5)〈v sinh v〉+ ∂t〈cosh v − 1〉+ ‖∇v‖22 ≤ c5‖1BaR
‖1,

or setting λ = 2−1c5 and changing v to v
c , c > 0,

〈cosh v(t)
c

− 1〉+
∫ t

0

‖∇v(s)

c
‖22ds ≤ 〈cosh f

c
− 1〉+ tc5‖1BaR

‖1. (⋆)

From (⋆) we obtain that
∫ t

0
‖∇v(s)‖22ds ≤ c21(〈cosh f

c1
− 1〉+ tc5‖1BaR

‖1) with c1 = ‖f‖Φ. Therefore,

∫ t

0

‖∇v(s)‖22ds ≤ (1 + tc5‖1BaR
‖1)‖f‖2Φ. (⋆1)

From (⋆) we obtain also the inequality

〈cosh v(
t
m)

c
− 1〉 ≤ 〈cosh f

c
− 1〉+ c5‖1BaR

‖1
t

m
, m = 1, 2, . . . (⋆2)

2. Set c = ‖f‖Φ

1−γm
, m ≥ m0, where γm = c5‖1BaR

‖1 t
m and γm0

< 1. Then, due to

〈cosh f

(1− γm)c
− 1〉 ≤ 1 and inequality cosh

f

c
− 1 ≤ (1− γm)

(

cosh
f

(1− γm)c
− 1

)

,

we obtain from (⋆2) that

〈

cosh
v( t

m)

c
− 1

〉

≤ 1− γm + γm = 1, i.e.
∥

∥v(
t

m
)
∥

∥

Φ
≤ c =

1

1− γm
‖f‖Φ.

Therefore, setting G = c5‖1BaR
‖1, and using semigroup property of v(t), we arrive at

‖v(t)‖Φ ≤ (1−G
t

m
)−m‖f‖Φ

and so

‖v(t)‖Φ ≤ eGt‖f‖Φ.

Thus, setting T t
nf := un(t),

‖T t
nf‖Φ ≤ e(2

−1c5+G)t‖f‖Φ. (8)

Thus, every T t
n admits extension by continuity from C∞

c to LΦ, which we denote again by T t
n. We

have limt↓0 ‖T t
nf − f‖Φ = 0 for all f ∈ C∞

c . Since n is finite, the latter is evident from the classical

theory, which allows to pass to the limit in n under the gague norm of T t
nf − f . Now, combined with

(8), this yields

s-LΦ- lim
t↓0

T t
n = 1, n ≥ 1,

i.e. semigroups T t
n are strongly continuous. (So, we can write T t

n = e−tΛn , where generator Λn should

be considered as appropriate operator realization of −∆ + b · ∇ in LΦ. For the sake of uniformity,

however, we will continue to use notation T t
n throughout the rest of the proof.)
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3. Next, we claim that {T t
nf} is a Cauchy sequence in L∞([0, T ],LΦ) and in L2([0, T ],W 1,2(Rd)).

Indeed, set h = vn−vk

c , c > 0. Then

λh + ∂th−∆h+ bn · ∇h = c−1(bk − bn) · ∇vk, h(0) = 0,

so

sup
0≤s≤t

〈cosh h(s)− 1〉+
∫ t

0

‖∇h(s)‖22ds ≤ c5〈1BaR
〉t+ c−1e2c

−1‖f‖∞

∫ t

0

〈|bk − bn||∇vk(s)|〉ds. (⋆⋆)

We estimate, using (⋆1),

∫ t

0

〈|bk − bn||∇vk(s)|〉ds ≤
(
∫ t

0

‖bk − bn‖22ds
)

1
2
(
∫ t

0

‖∇vk(s)‖22ds
)

1
2

≤
√
t‖bk − bn‖2(1 + tG)

1
2 ‖f‖Φ.

Thus, for every fixed c > 0, t > 0,

lim
n,k→∞

sup
0≤s≤t

〈coshh(s)− 1〉+ lim
n,k→∞

∫ t

0

‖∇h(s)‖22ds ≤ c5〈1BaR
〉t.

In particular, limn,k→∞
∫ t

0
‖∇(vn(s)− vk(s))‖22ds ≤ c2c5〈1BaR

〉t for any c > 0, i.e.

lim
n,k→∞

∫ t

0

‖∇vn(s)−∇vk(s)‖22ds = 0.

Now fix t0 by c5〈1BaR
〉t0 ≤ 1, then

lim
n,k→∞

sup
0≤s≤t0

〈cosh h(s)− 1〉 ≤ 1 for any c > 0.

The latter means that limn,k→∞ sup0≤s≤t0 ‖vn(s)− vk(s)‖Φ = 0. The claim is established.

4. Set T tf := LΦ- limn T
t
nf , f ∈ C∞

c . Then, clearly, by (8)

‖T tf‖Φ ≤ e(2
−1c5+G)t‖f‖Φ.

We extend T t by continuity from C∞
c to LΦ. Then, clearly, T t+s = T tT s,

s-LΦ- lim
t↓0

T t = 1.

This is the sought semigroup e−tΛΦ := T t. Moreover, in view of (⋆1), we have

T tg ∈ L2([0, T ],W 1,2(Rd)) g ∈ LΦ.

The weak solution characterization of u = T tg now follows right away from the convergence results

established above. The proof of (i), (ii) is completed.

(iii) This uniqueness result follows right away from the construction of the semigroup T t by verifying

Cauchy’s criterion. �
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5.2. Proof of Theorem 3.2. Set v := e−t(λ+Λ(bn)f . We have

λ〈v sinh v〉+ ∂t〈cosh v − 1〉+ ‖∇v‖22 + 8‖∇ cosh
v

2
‖22 = −4〈bn cosh

v

2
,∇ cosh

v

2
〉.

Put w := cosh v
2 . Let us first establish the estimate

4|〈bnw,∇w〉| ≤ 8‖∇w‖22 + c5〈ζR1
w2〉+ ‖b(2)w‖22. (9)

Writing b
(1)
n = (b

(1)
n,1, b

(1)
n,2, . . . , b

(1)
n,d), b

(2) = (b
(2)
1 , b

(2)
2 , . . . , b

(2)
d ) and using the assumptions and inequality

4|αβ| ≤ |α|2 + 4‖β|2, we have

〈b(1)n,iw,∇iw〉 = 〈b(1)n,iζR1
w, 1

sprt b
(1)
n,i

∇iw〉, 〈b(2)i w,∇iw〉 = 〈b(2)i w, 1
sprt b

(2)
i

∇iw〉,

so

4|〈bnw,∇w〉| ≤ ‖b(1)n ζR1
w‖22 + ‖b(2)w‖22 + 4

d
∑

i=1

〈(1
sprt b

(1)
n,i

+ 1
sprt b

(2)
i

)|∇iw|2〉

≤ ‖b(1)n ζR1
w‖22 + ‖b(2)w‖22 + 4‖∇w‖22

≤ 4‖∇(ζR1
w)‖22 + c4‖ζR1

w‖22 + ‖b(2)w‖22 + 4‖∇w‖22.

Recalling that ‖∇(ζR1
w)‖22 ≤ ‖∇w‖22 + (d− 1)R−2

1 〈ζR1
w2〉, we arrive at (9).

The proof of the crucial bounds
∫ t

0

‖e−λs∇T s
nf‖22ds ≤ (1 + tG)‖f‖2Φ, ‖T t

nf‖Φ ≤ e(λ+G)t‖f‖Φ

follows the proof of Theorem 3.1, i.e. using (9) we obtain inequality

λ〈v sinh v〉+ ∂t〈cosh v − 1〉+ ‖∇v‖22 ≤ (c4 + (d− 1)2R−2
1 )〈1BaR1

cosh2
v

2
〉+ 〈|b(2)|2 cosh2 v

2
〉,

and hence inequality ∂t〈cosh v − 1〉+ ‖∇v‖22 ≤ G. Integrating the latter over [0, t], we have

〈cosh v(t)− 1〉+
∫ t

0

‖∇v(s)‖22ds ≤ 〈cosh f − 1〉+Gt.

The rest of the proof essentially repeats the proof of Theorem 3.1. �

5.3. Proof of Theorem 3.3. We start with identity

λ′〈v sinh v〉+ ∂t〈cosh v − 1〉+ ‖∇v‖22 + 8‖∇ cosh
v

2
‖22 = −〈bn · ∇(cosh v − 1)〉, v = e−t(λ′+Λ(bn))f.

Let us estimate −〈bn · ∇(cosh v − 1)〉 from above. Define η̂(t) to be 1 if t ≤ 1, 2− t if 1 < t < 2 and 0

if t ≥ 2. Set ηR(x) = η̂( |x|R ). Then

−〈bn · ∇(cosh v − 1)〉 = − lim
R→∞

〈ηRbn · ∇(cosh v − 1)〉

= lim
R

〈ηRdiv bn, cosh v − 1〉+ lim
R

〈∇ηR, bn(cosh v − 1)〉

≤ 〈EnV1, cosh v − 1〉+ 〈EnV2, cosh v − 1〉;

〈EnV1, cosh v − 1〉 =2〈V1, En(cosh
2 v

2
− 1)〉 = −2〈V1〉+ 2

∥

∥V
1
2
1 (ζR1

√

En cosh
2 v

2
)
∥

∥

2

2

≤ 8
∥

∥∇
(

ζR1

√

En cosh
2 v

2

)∥

∥

2

2
+ 2c4

〈

ζR1
En cosh

2 v

2

〉
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and setting w = cosh v
2

∥

∥∇(ζR1

√

Enw2)
∥

∥

2

2
=

∥

∥ζR1
∇
√

Enw2
∥

∥

2

2
−
〈

ζR1
∆ζR1

, Enw
2
〉

≤ ‖ζR1
∇
√

Enw2‖22 + (d− 1)R−2
1 〈EnζR1

, w2〉
(

we are using
∣

∣∇
√

Enw2
∣

∣ =

∣

∣En(w∇w)
∣

∣

√
Enw2

≤
√

En|∇w|2
)

≤
∥

∥∇w
∥

∥

2

2
+ (d− 1)R−2

1

〈

EnζR1
, w2

〉

.

Thus, −〈bn · ∇(cosh v− 1)〉 ≤ 8‖∇ cosh v
2‖22 + [2c4 + (d− 1)8R−2

1 ]〈EnζR1
, cosh2 v

2 〉+ 〈EnV2, cosh v− 1〉
and the inequality

λ′〈v sinh v〉+ ∂t〈cosh v − 1〉+ ‖∇v‖22 ≤ [2c4 + (d− 1)8R−2
1 ]〈EnζR1

, cosh2 v

2
〉+ 〈EnV2, cosh v − 1〉

is derived and yields (with λ′ = λ+ ‖V2‖∞)

∂t〈cosh v − 1〉+ ‖∇v‖22 ≤ G.

The rest of the proof is practically identical to the proof of Theorem 3.1. �

Remark 2. As we noted earlier, one can remove condition |b| ∈ L2 in Theorem 3.3 by considering

b̃ = b+ f, where b satisfies the assumptions of Theorem 3.3, and |f| ∈ L∞, div f ∈ L1
loc, V3 := 0∨div f ∈

L∞. Indeed, set b̃n = bn + f and let v = e−t(λ′+Λ(b̃n))f , where λ′ = λ+ ‖V2‖∞ + ‖V3‖∞. Then

∂t〈cosh v − 1〉+ ‖∇v‖22 ≤ G,

∫ t

0

〈|b̃k − b̃n||∇vk(s)|〉ds→ 0 as k, n→ ∞

due to |b̃k − b̃n| = |bk − bn|.

5.4. Proof of Theorem 3.4. Clearly, we are left to estimate 4‖bnw‖2‖∇w‖2, where bn = b1|b|≤n,

w = cosh v
2 , and v = e−tλun, as follows. Set ̺Rm

(x) = ζRm
(x− xm). We have

‖bnw‖22 =

∞
∑

m=1

‖b(m)
n ̺Rm

w‖22 ≤
∞
∑

m=1

δm‖∇(̺Rm
w)‖22 +

∞
∑

m=1

c(δm)‖̺Rm
w‖22,

‖∇(̺Rm
w)‖22 = ‖̺Rm

∇w‖22 + ‖w∇̺Rm
‖22 + 〈̺Rm

∇̺Rm
,∇w2〉

= ‖̺Rm
∇w‖22 − 〈̺Rm

∆̺Rm
, w2〉

≤ ‖∇w‖22 + (d− 1)R−2
m 〈̺Rm

w2〉,
∞
∑

m=1

δm‖∇(̺Rm
w)‖22 ≤ 4‖∇w‖22 + (d− 1)

∞
∑

m=1

δmR
−2
m 〈̺Rm

w2〉,

4‖bnw‖2‖∇w‖2 ≤ 8‖∇w‖22 +
∞
∑

m=1

Cm〈̺Rm
w2〉, Cm = c(δm) + 4(d− 1)δmR

−2
m .
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Finally,

∞
∑

m=1

Cm〈̺Rm
w2〉 ≤

∞
∑

m=1

Cm〈1B(xm,aRm)w
2〉

≤ 〈w2 − 1〉
∞
∑

m=1

Cm + ωda
d

∞
∑

m=1

CmR
d.

�

Appendix A. Hölder continuity of solutions and embedding theorems

Throughout this section, b ∈ Fδ, δ < 4. We use notations introduced in the previous sections:

bn = Eεnb, εn ↓ 0, and

Λn := −∆+ bn · ∇.

Theorem A.1 ([19, Theorem 5]). The classical solution u = un to non-homogeneous equation

(

µ+ Λn

)

u = f, f ∈ C∞
c , µ > 0, (10)

is Hölder continuous in every ball B1(x) with constants that do not depend on n (i.e. boundedness or

smoothness of bn) or x ∈ R
d.

Theorem A.2 (special case of [19, Theorem 6]). Let u = un denote the classical solution to non-

homogeneous equation

(µ+Λn)u = |bn|f, f ∈ C ∩ L1. (11)

Then for fixed 1 < θ < d
d−2 and p > 2

2−
√
δ
, p ≥ 2, there exist constants µ1 > 0, κ, C and β ∈]0, 1[

independent of n such that, for every x ∈ R
d,

sup
B 1

2
(x)

|u| ≤ C

(

(µ− µ1)
− 1

pθ 〈
(

1|bn|>1 + |bn|pθ1|bn|≤1

)

|f |pθρx〉
1
pθ

+ µ−β
p 〈
(

1|bn|>1 + |bn|pθ
′

1|bn|≤1

)

|f |pθ′

ρx〉
1

pθ′

)

(12)

for all µ > µ1, where ρx(y) := ρ(y − x), ρ(y) = (1 + κ|y|2)− d
2−1, y ∈ R

d.

It follows that

‖u‖∞ ≤ C sup
x∈ 1

2Z
d

(

(µ− µ0)
− 1

pθ
〈(

1|bn|>1 + |bn|pθ1|bn|≤1

)

|f |pθρx
〉

1
pθ

+ µ−β
p
〈(

1|bn|>1 + |bn|pθ
′

1|bn|≤1

)

|f |pθ′

ρx
〉

1
pθ′

)

.

To make the paper self-contained, below we reproduce more or less verbatim the proofs of [19,

Theorem 5] and [19, Theorem 6].
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A.1. Proof of Theorem A.1. Fix throughout this proof p > 2
2−

√
δ
, p ≥ 2. Set

v := (u− k)+, k ∈ R.

Fix R0 ≤ 1.

Proposition A.1 ([19, Prop. 1], Remark 12). For all 0 < r < R ≤ R0,

‖(∇v p
2 )1Br

‖22 ≤ K1

(R− r)2
‖v p

2 1BR
‖22 +K2‖|f − µu| p2 1u>k1BR

‖22

for generic constants K1, K2 (in particular, independent of k or r, R).

Lemma A.1 ([12, Lemma 7.1]). If {zm}∞m=0 ⊂ R+ is a sequence of positive real numbers such that

zm+1 ≤ NCm
0 z

1+α
m

for some C0 > 1, α > 0, and

z0 ≤ N− 1
αC

− 1
α2

0 .

Then limm zm = 0.

Lemma A.2 ([12, Lemma 7.3]). Let ϕ(t) be a positive function, and assume that there exists a constant

q and a number 0 < τ < 1 such that for every 0 < R < R0

ϕ(τR) ≤ τ δϕ(R) +BRβ

with 0 < β < δ, and

ϕ(t) ≤ qϕ(τkR)

for every t in the interval (τk+1R, τkR). Then, for every 0 < ρ < R < R0, we have

ϕ(ρ) ≤ C

((

ρ

R

)β

ϕ(R) +Bρβ
)

with constant C that depends only on q, τ , δ and β.

The proof follows De Giorgi’s method as it is presented in [12, Ch. 7] with appropriate modifications

to account for our somewhat different definition of Lp De Giorgi’s classes, i.e. functions satisfying the

inequality in Proposition A.1.

Proposition A.2 ([19, Prop. 2]). For all 0 < r < R ≤ R0,

sup
BR

2

u ≤ C1

(

1

|BR|
〈up1BR∩{u>0}〉

)
1
p
( |BR ∩ {u > 0}|

|BR|

)
α
p

+ C2R
2
p

for generic constants C1, C2 that also depend on ‖f − µu‖∞ (≤ 2‖f‖∞), where α > 0 is fixed by

α(α+ 1) = 2
d .

Proof. Without loss of generality, R0 = 1. Let 1
2 < r < ρ ≤ 1. Fix η ∈ C∞

c , η = 1 on Br, η = 0 on

R
d \ B̄ r+ρ

2
, |∇η| ≤ 4

ρ−r . Set ζ := ηv = η(u − k)+, k ∈ R. Using Hölder’s inequality and Sobolev’s
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embedding theorem, we obtain

‖v p
2 1Br

‖22 ≤ ‖ζ p
2 1Br

‖22 ≤ 〈1Br∩{u>k}〉
2
d 〈ζ pd

d−21B r+ρ
2

〉 d−2
d

≤ c1|Br ∩ {u > k}| 2d 〈|∇ζ p
2 |21B r+ρ

2

〉

= c1|Br ∩ {u > k}| 2d 〈|(∇η p
2 )v

p
2 + η

p
2∇v p

2 |21B r+ρ
2

〉

Hence

‖v p
2 1Br

‖22 ≤ c2|Br ∩ {u > k}| 2d
(

1

(ρ− r)2
‖v p

2 1B r+ρ
2

‖22 + ‖(∇v p
2 )1B r+ρ

2

‖22
)

.

On the other hand, Proposition A.1 yields:

‖(∇v p
2 )1B r+ρ

2

‖22 ≤ K1

(ρ− r)2
‖v p

2 1Bρ
‖22 +K2‖f − µu‖p∞

∣

∣Bρ ∩ {u > k}
∣

∣, (13)

so

‖v p
2 1Br

‖22 ≤ C|Br ∩ {u > k}| 2d
(

1

(ρ− r)2
‖v p

2 1Bρ
‖22 + ‖f − µu‖p∞

∣

∣Bρ ∩ {u > k}
∣

∣

)

≤ C|Bρ ∩ {u > k}| 2d
(ρ− r)2

‖v p
2 1Bρ

‖22 + C‖f − µu‖p∞|Bρ ∩ {u > k}|1+ 2
d . (14)

Now, returning from notation v to (u − k)+, we note that if h < k, then ‖(u − k)
p
2 1Bρ∩{u>k}‖2 ≤

‖(u−h) p
2 1Bρ∩{u>h}‖2 and ‖(u−h) p

2 1Bρ∩{u>h}‖22 ≥ (k−h)p|Bρ∩{u > k}|. Therefore, we obtain from

(14)

‖(u− k)
p
2
+1Br

‖22 ≤ C

(ρ− r)2
‖(u− h)

p
2
+1Bρ

‖22|Bρ ∩ {u > h}| 2d

+
C‖f − µu‖p∞

(k − h)p
‖(u− h)

p
2
+1Bρ

‖22|Bρ ∩ {u > h}| 2d .

Multiplying this inequality by |Br ∩ {u > k}|α
(

≤ 1
(k−h)pα ‖(u − h)

p
2
+1Bρ

‖2α2
)

and using α2 + α = 2
d ,

we obtain

‖(u− k)
p
2
+1Br

‖22|Br ∩ {u > k}|α

≤ C

[

1

(ρ− r)2
+

‖f − µu‖p∞
(k − h)p

]

1

(k − h)pα
(

‖(u− h)
p
2
+1Bρ

‖22|Bρ ∩ {u > h}|α
)1+α

.

Now, take r := ri+1, ρ := ri, where ri :=
R
2 (1 +

1
2i ) and k := ki+1, h := ki, where ki := ξ(1 − 2−i),

with constant ξ ≥ R
2
p to be chosen later. Then, setting

zi = z(ki, ri) := ‖(u− ki)
p
2
+1Bri

‖22|Bri ∩ {u > ki}|α,

we have

zi+1 ≤ K

[

22i +
2piR2

ξp

]

1

R2

2piα

ξpα
z1+α
i

hence (using ξ ≥ R
2
p )

zi+1 ≤ 2p(1+α)i 2K

R2

1

ξpα
z1+α
i .
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We apply Lemma A.1. In the notation of this lemma, C0 = 2p(1+α) and N = 2K
R2

1
ξpα . We need

z0 ≤ N− 1
αC

− 1
α2

0

where, recall, z0 = 〈up1BR∩{u>0}〉|BR ∩ {u > 0}|α. The latter amounts to requiring

ξ ≥ C1R
− 2

pα z
1
p

0 .

Take ξ := R
2
p + C1R

− 2
pα z

1
p

0 . By Lemma A.1, z(ξ, R2 ) = 0, i.e. supR
2
u ≤ ξ. The claimed inequality

follows. �

Set

osc (u,R) := sup
y,y′∈BR

|u(y)− u(y′)|.

Proposition A.3 ([19, Prop. 3]). Fix k0 by

2k0 =M(2R) +m(2R) := sup
B2R

u+ inf
B2R

u.

Assume that |BR ∩ {u > k0}| ≤ γ|BR| for some γ < 1. If

osc (u, 2R) ≥ 2n+1CR
2
p , (15)

then, for kn :=M(2R)− 2−n−1osc (u, 2R),

|BR ∩ {u > kn}| ≤ cn− d
2(d−1) |BR|.

Proof. 1. For h ∈]k0, k[, set w := (u − h)
p
2 if h < u < k, set w := (k − h)

p
2 if u ≥ k, and w := 0 if

u ≤ h. Note that w = 0 in BR \ (BR ∩ {u > k0}). The measure of this set is greater than γ|BR|, so

the Sobolev embedding theorem applies and yields

(k − h)
p
2 |BR ∩ {u > k}| d−1

d ≤ c1〈w
d

d−11BR
〉 d−1

d ≤ c2〈|∇w|1∆〉
≤ c2|∆| 12 〈|∇(u− h)

p
2 |21BR∩{u>h}〉

1
2 ,

where

∆ := BR ∩ {u > h} \ (BR ∩ {u > k}).

Now, it follows from Proposition A.1 that

〈|∇(u− h)
p
2 |21BR∩{u>h}〉 ≤

C3

R2
〈(u− h)p1B2R∩{u>h}〉+ C4|B2R ∩ {u > h}|

≤ C3R
d−2(M(2R)− h)p + C5R

d.

For h ≤ kn we have M(2R) − h ≥ M(2R) − kn ≥ CR
2
p , where we have used (15). Therefore,

summarizing what was written above, we have

(k − h)
p
2 |BR ∩ {u > k}| d−1

d ≤ c|∆| 12R d−2
2 (M(2R)− h)

p
2 .

2. Select k = ki := M(2R)− 2−i−1osc (u, 2R), h = ki−1. Then

M(2R)− h = 2−iosc (u, 2R), |k − h| = 2−i−1osc (u, 2R),

so

|BR ∩ {u > kn}|
2(d−1)

d ≤ |BR ∩ {u > ki}|
2(d−1)

d ≤ C|∆i|Rd−2,
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where ∆i := BR ∩ {u > ki} \ (BR ∩ {u > ki−1}). Summing up in i from 1 to n, we obtain

n|BR ∩ {u > kn}|
2(d−1)

d ≤ CRd−2|BR ∩ {u > k0}| ≤ C ′R2(d−1),

and the claimed inequality follows. �

Proof of Theorem A.1, completed. Fix k0 by 2k0 = M(2R) + m(2R). Without loss of generality,

|BR ∩ {u > k0}| ≤ 1
2 |BR| (otherwise we replace u by −u). Set kn :=M(2R)− 2−n−1osc (u, 2R) > k0.

By Proposition A.2,

sup
BR

2

(u− kn) ≤ C1

( 1

|BR|
〈(u− kn)

p
1BR∩{u>kn}〉

)
1
p

( |BR ∩ {u > kn}|
|BR|

)
α
p

+ C2R
2
p

≤ C1 sup
BR

(u− kn)

( |BR ∩ {u > kn}|
|BR|

)

1+α
p

+ C2R
2
p

We now apply Proposition A.3 (with, say, C = 1). Fix n by

cn− d
2(d−1) ≤

(

1

2C1

)

p
1+α

.

Then, if osc (u, 2R) ≥ 2n+1R
2
p , we obtain from Proposition A.3

M

(

R

2

)

− kn ≤ 1

2
(M(2R)− kn) + C2R

2
p ,

so,

M

(

R

2

)

≤M(2R)− 1

2n+1
osc (u, 2R) +

1

2

1

2n+1
osc (u, 2R) + C2R

2
p ,

M

(

R

2

)

−m

(

R

2

)

≤M(2R)−m(2R)− 1

2

1

2n+1
osc (u, 2R) + C2R

2
p .

Hence, since osc (u, 2R) =M(2R)−m(2R),

osc

(

u,
R

2

)

≤
(

1− 1

2n+2

)

osc (u, 2R) + C2R
2
p . (16)

If osc (u, 2R) ≤ 2n+1R
2
p , then, clearly,

osc

(

u,
R

2

)

≤
(

1− 1

2n+2

)

osc (u, 2R) +
1

2
R

2
p . (17)

This yields the sought Hölder continuity of u via Lemma A.2 with τ = 1
4 , δ = logτ (1 − 2−n−2) and

0 < β < 2
p ∧ δ. (Note that the second inequality in the conditions of Lemma A.2 holds if q = 1 and ϕ

is non-decreasing, which is our case.) �

A.2. Proof of Theorem A.2. Recall that v := (u− k)+, where u = un solves

(µ+Λn)u = |bn|f, f ∈ C ∩ L1.

It suffices to carry out the proof for the case f ≥ 0. We will need
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Proposition A.4 ([19, Prop. 4]). Fix R0 ≤ 1 and p > 2
2−

√
δ
, p ≥ 2. Then, for all 0 < r < R ≤ R0

and every k ≥ 0,

µ‖v p
2 1Br

‖22 + ‖(∇v p
2 )1Br

‖22 ≤ K1

(R− r)2
‖v p

2 1BR
‖22

+K2‖
(

1|bn|>1 + |bn|
p
2 1|bn|≤1

)

|f | p2 1u>k1BR
‖22

for constants K1, K2 independent of r, R, k and n.

Recall that we have fixed 1 < θ < d
d−2 .

Proposition A.5 ([19, Prop. 5]). There exists constants K and β ∈]0, 1[ such that, for all µ ≥ 1,

sup
B 1

2

u+ ≤ K

(

〈upθ+ 1B1
〉 1
pθ + µ−β

p
〈

(1|bn|>1 + |bn|p1|bn|≤1)
θ′ |f |pθ′

1B1

〉
1

pθ′

)

. (18)

Proof. Proposition A.4 yields

µ‖v p
2 1Br

‖22 + ‖v p
2 ‖2W 1,2(Br)

≤ K̃1(R− r)−2‖v‖pLp(BR)

+K2‖Θ
1
p f1u>k‖pLp(BR), v = (u− k)+, k ≥ 0,

where Θ := 1|bn|>1+|bn|p1|bn|≤1 and K̃1, K2 are generic constants. By the Sobolev embedding theorem,

µ‖v‖pLp(Br)
+ ‖v‖p

L
pd

d−2 (Br)
≤ C1(R− r)−2‖v‖pLp(BR) + C2‖Θ

1
p f1u>k‖pLp(BR).

Next, we estimate the left-hand side from below using interpolation inequality:

µβ‖v‖pLq(Br)
≤ βµ‖v‖pLp(Br)

+ (1− β)‖v‖p
L

pd
d−2 (Br)

, 0 < β < 1,
1

q
= β

1

p
+ (1− β)

d− 2

pd
.

Put θ0 := q
p , so 1 < θ0 <

d
d−2 . We fix β ∈]0, 1[ sufficiently small so that θ < θ0.

Hence, taking into account that q = pθ0,

µβ‖v‖p
Lpθ0 (Br)

≤ C̃1(R− r)−2‖v‖pLp(BR) + C̃2‖Θ
1
p f1u>k‖pLp(BR).

Applying Hölder’s inequality in the RHS, we obtain

µβ‖v‖p
Lpθ0 (Br)

≤ C̃1(R− r)−2|BR|
θ−1
θ ‖v‖p

Lpθ(BR)
+ C̃2‖Θ

1
p f1u>k‖pLp(BR). (19)

Set

Rm :=
1

2
+

1

2m+1
, m ≥ 0,

so Bm ≡ BRm
is a decreasing sequence of balls converging to the ball of radius 1

2 . By (19),

µβ‖v‖p
Lpθ0 (Bm+1)

≤ Ĉ12
2m‖v‖p

Lpθ(Bm)
+ C̃2‖Θ

1
p f1u>k‖pLp(Bm)

≤ Ĉ12
2m‖v‖p

Lpθ(Bm)
+ C̃2H |Bm ∩ {v > 0}| 1θ , (20)

where

H := 〈Θθ′ |f |pθ′

1B0〉 1
θ′ (B0 = B1, i.e. ball of radius 1)

On the other hand, by Hölder’s inequality,

‖v‖pθ
Lpθ(Bm+1)

≤ ‖v‖pθ
Lpθ0 (Bm+1)

(

|Bm ∩ {v > 0}|
)1− θ

θ0

.
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Applying (20) in the first multiple in the RHS, we obtain

‖v‖pθ
Lpθ(Bm+1)

≤ C̃µ−βθ

(

22θm‖v‖pθ
Lpθ(Bm)

+Hθ|Bm ∩ {v > 0}|
)(

|Bm ∩ {v > 0}|
)1− θ

θ0

.

Now, put vm := (u − km)+ where km := ξ(1 − 2−m) ↑ ξ, where constant ξ > 0 will be chosen later.

Then, using 22θm ≤ 2pθm and dividing by ξpθ,

1

ξpθ
‖vm+1‖pθLpθ(Bm+1)

≤ C̃µ−βθ

(

2pθm

ξpθ
‖vm+1‖pθLpθ(Bm)

+
1

ξpθ
Hθ|Bm ∩ {u > km+1}|

)(

|Bm ∩ {u > km+1}|
)1− θ

θ0

.

Using that µ ≥ 1, we further obtain

1

ξpθ
‖vm+1‖pθLpθ(Bm+1)

≤ C̃

(

2pθm

ξpθ
‖vm+1‖pθLpθ(Bm)

+
1

ξpθ
µ−βθHθ|Bm ∩ {u > km+1}|

)(

|Bm ∩ {u > km+1}|
)1− θ

θ0

.

From now on, we require that constant ξ satisfies ξp ≥ µ−βH , so

1

ξpθ
‖vm+1‖pθLpθ(Bm+1)

(21)

≤ C̃

(

2pθm

ξpθ
‖vm+1‖pθLpθ(Bm)

+ |Bm ∩ {u > km+1}|
)(

|Bm ∩ {u > km+1}|
)1− θ

θ0

.

Now,

|Bm ∩ {u > km+1}| =
∣

∣Bm ∩
{

(
u− km

km+1 − km
)2θ > 1

}
∣

∣

≤ (km+1 − km)−pθ〈vpθm 1Bm〉 = ξ−pθ2pθ(m+1)‖vm‖pθ
Lpθ(Bm)

,

so using in (21) ‖vm+1‖Lpθ(Bm) ≤ ‖vm‖Lpθ(Bm) and applying the previous inequality, we obtain

1

ξpθ
‖vm+1‖pθLpθ(Bm+1)

≤ C̃2pθm(2− θ
θ0

)

(

1

ξpθ
‖vm‖pθ

Lpθ(Bm)

)2− θ
θ0

.

Denote zm := 1
ξpθ

‖vm‖pθ
Lpθ(Bm)

. Then

zm+1 ≤ C̃γmz1+α
m , m = 0, 1, 2, . . . , α := 1− θ

θ0
, γ := 2pθ(2−

θ
θ0

)

and z0 = 1
ξpθ

〈upθ+ 1B0〉 ≤ C̃− 1
α γ−

1
α2 (recall: B0 := BR0

≡ B1) provided that we fix c by

ξpθ := C̃
1
α γ

1
α2 〈upθ+ 1B0〉+ µ−βθHθ.

Hence, by Lemma A.1, zm → 0 as m→ ∞. It follows that supB1/2
u+ ≤ ξ, and the claimed inequality

follows. �

To end the proof of Theorem A.2, we need to estimate 〈upθ+ 1B1
〉1/pθ in the RHS of (18) in terms

of f . We will do it by estimating 〈upθ+ ρ〉1/pθ and then applying inequality ρ ≥ c1B1
for appropriate

constant c = cd.
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Proposition A.6. There exist generic constants C, k and µ0 > 0 such that for all µ > µ0,

(µ− µ0)〈upρ〉+ 〈|∇u p
2 |2ρ〉 ≤ C

〈(

1|bn|>1 + |bn|p1|bn|≤1

)

|f |pρ
〉

. (22)

Proof. The proof is standard, i.e. we multiply equation (11) by u|u|p−2, integrate and then use apply

to the drift term quadratic inequality and the form-boundedness condition. In the term that contain

∇ρ we apply inequality |∇ρ| ≤ (d2 +1)
√
κρ with κ chosen sufficiently small; since our assumption on δ

is a strict inequality δ < 4, this choice of κ suffices to get rid of the terms containing ∇ρ. The details

can be found e.g. in [19]. �

Proof of Theorem A.2, completed. By Proposition A.5, for all µ ≥ 1,

sup
y∈B 1

2
(x)

|u(y)| ≤ K

(

〈|u|pθρx〉
1
pθ + µ−β

p
〈(

1|bn|>1 + |bn|pθ
′

1|bn|≤1

)

|f |pθ′

ρx
〉

1
pθ′

)

,

where ρx(y) := ρ(y− x), and constant C is generic. Applying Proposition A.6 to the first term in the

RHS (with pθ instead of p), we obtain for all µ ≥ µ0 ∨ 1

sup
y∈B 1

2
(x)

|u(y)| ≤ C

(

(µ− µ0)
− 1

pθ
〈(

1|bn|>1 + |bn|pθ1|bn|≤1

)

|f |pθρx
〉

1
pθ

+ µ−β
p
〈(

1|bn|>1 + |bn|pθ
′

1|bn|≤1

)

|f |pθ′

ρx
〉

1
pθ′

This ends the proof of Theorem A.2. �

Following the proof of Theorem A.2, we obtain

Corollary A.1. In the assumptions and the notations of Theorem A.2, if u = un solves on R
d

(µ+Λn)u = f , then, for every x ∈ R
d,

sup
B 1

2
(x)

|u| ≤ K

(

(µ− µ1)
− 1

pθ 〈|f |pθρx〉
1
pθ + µ−β

p 〈|f |pθ′

ρx〉
1

pθ′

)

.

where K does not depend on x ∈ R
d or n.
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