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ON PARTICLE SYSTEMS AND CRITICAL STRENGTHS OF GENERAL

SINGULAR INTERACTIONS

D.KINZEBULATOV

Abstract. For finite interacting particle systems with strong repulsing-attracting or general

interactions, we prove global weak well-posedness almost up to the critical threshold of the

strengths of attracting interactions (independent of the number of particles), and establish

other regularity results, such as a heat kernel bound in the regions where strongly attracting

particles are close to each other. Our main analytic instruments are a variant of De Giorgi’s

method in Lp with appropriately chosen large p, and an abstract desingularization theorem.
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1. Introduction

The paper is concerned with well-posedness and other properties of N -particle system

dXi =− 1

N

N
∑

j=1,j 6=i
Kij(Xi −Xj)dt+Mi(Xi)dt+

√
2dBi, Xi(0) = xi ∈ R

d (1.1)

{Bi(t)}t≥0 are independent d-dimensional Brownian motions,

under broad assumptions on singular (i.e. locally unbounded) interaction kernels and driftsKij,Mi :

R
d → R

d (i = 1, . . . , N) that can have repulsion/attraction structure or can be of general form.

Our primary goal is to obtain conditions on Mi and Kij that

1) reach blow up effects, and

2) withstand the passage to the limit N → ∞.

Interacting particle systems of type (1.1) arise in many physical and biological models [3, 9, 10,

13, 15, 16, 19, 23, 45, 52, 53]. Many of these models require one to deal with the interactions that

are not only singular but are so singular that they reach blow up effects: replacing Kij in (1.1)

by (1 + ε)Kij, i.e. increasing the strength of interactions by factor 1 + ε, can lead to a collapse in

the well-posedness of (1.1) even if ε > 0 is small. That is, the particles start to collide in finite

time with positive probability, and (1.1) ceases to have a weak solution.

One of the main questions studied in the present paper is what is the critical threshold value

of the strength of general singular interactions that separates the well-posedness of (1.1) from a

blow up.

Throughout the paper, dimension d ≥ 3. Important case d = 2 requires a separate study which

we plan to carry out elsewhere.

To illustrate the blow up effect in particle systems, and to formalize the notion of the “strength

of interactions”, consider a particle system with the model singular attracting kernel (1.10):

dXi = − 1

N

N
∑

j=1,j 6=i

√
κ
d− 2

2

Xi −Xj

|Xi −Xj |2
dt+

√
2dBi, (1.2)

where κ measures the strength of attraction between the particles. (It is convenient for us to

include factor d−2
2 in the coefficient in (1.10) because we are going to use Hardy’s inequalities, see

Example 1(2). The kind of Hardy inequalities that we need are not valid in two dimensions.)

(a) In the two-particle case N = 2, a simple argument shows that for

κ > 16

(

d

d− 2

)2

and X1(0) = X2(0) the particle system (1.2) does not have a weak solution. Informally, in

the struggle between the drift and the diffusion the former starts to have an upper hand.

If fact, already if κ > 16 the particles collide in finite time with positive probability even
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if X1(0), X2(0) are uniformly distributed e.g. in a cube, see [7] for detailed proof. On the

other hand, if

κ < 16,

then (1.2) has a global in time weak solution for any initial configuration X1(0), X2(0) ∈
R
d. The latter can be seen from the results of the present paper.

(b) The weak well-posedness and the blow-up effects for the two-dimensional counterpart of

(1.2)

dXi = − 1

N

N
∑

j=1,j 6=i

√
κ
Xi −Xj

|Xi −Xj|2
dt+

√
2dBi, N ≥ 2, (1.3)

were studied in detail, among other problems connected to the Keller-Segel model of

chemotaxis, in [10, 15].

(c) The density of the formal invariant measure of (1.2)

ψ(x) =
∏

1≤i<j≤N
|xi − xj|−

√
κ d−2

2
1
N

is locally summable if and only if κ < 16( d
d−2)

2. Also, as κ reaches and surpasses κ = 16,

ψ ceases to be in W 2,1
loc .

Another analytic fact that suggests that the singularities of the drift in (1.2) are critical

for any N ≥ 2, i.e.κ in general cannot be too large, is the estimates on the constant in the

many-particle Hardy inequality (1.20) due to [22]. We employ their result in the proof of

Theorem 2(iii).

(d) The blow up effects are observed for the Keller-Segel model (here in the parabolic-elliptic

form):

{

∂tρ−∆ρ+
√
κ div (ρ∇v) = 0, ρ(0, ·) = ρ0(·),

−∆v = ρ,

where ρ is the population density and v is the chemical density [10, 13, 15, 16, 23, 52],

see also references therein. Of course,
∫

Rd ρ0(x)dx = 1 propagates to
∫

Rd ρ(t, x)dx = 1 for

all t > 0. Solving the elliptic equation, one obtains the expression for the drift:

∇v = −K1 ∗ ρ, K1(y) = cd
y

|y|d , cd > 0 (1.4)

(we can further redefine κ to have cd = 1). The resulting McKean-Vlasov PDE

∂tρ−∆ρ−
√
κ div (ρ(K1 ∗ ρ)) = 0 (1.5)

is comparable to (1.2) only in dimension d = 2, where it does indeed arise at the mean

field limit of particle system (1.3) as N → ∞ [10, 15, 16, 52]. The fact that one needs

d = 2 is at the first regard somewhat disappointing for us, see, however, the end of remark

(iv) below. It should be added that there is a significant recent progress in understanding
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the behaviour of (1.5), (1.3) around and at the critical threshold κ = 16 both at the level

of PDEs and at the SDE level, see [16, 52]. At the PDE level there are other important

results on admissible strengths of critical singular interactions and the McKean-Vlasov

equation, including recent result in [8], see Section 1.2.

The proofs of the results described in (b) and in (d) depend on the special form of the

Riesz interaction kernels in (1.2) and (1.4).

Despite the prominent role played in applications by the Riesz interaction kernels, there are

many other situations where one needs to handle more general critical-order singular interactions.

These are in the focus of the present paper. In this case, one can no longer exploit the special

structure of the interaction kernel in (1.2). It turns out that one can still cover large portions

(if not most) of the ranges of admissible strengths κ of interactions and establish, in particular,

global weak well-posedness of particle system (1.1), which however requires us to use some deep

methods in the theory of elliptic and parabolic PDEs. This is done in Theorems 1 and 2(i)-(iii).

For the model singular attracting kernel in (1.10) we prove a necessarily non-Gaussian upper

bound on the heat kernel (≡ the density of the law) of particle system (1.1), see Theorem 2(iv).

We believe that this bound is optimal in the regions where the particles are close to each other.

In Section 1.2 we comment on the existing literature on particle systems with general singular

interactions.

We focus on weak solutions and exploit the connection of (1.1) to the Kolmogorov backward

equation

(

∂t −∆x +
1

N

N
∑

i=1

N
∑

j=1,j 6=i
Kij(xi − xj) · ∇xi

)

v = 0, v(0, ·) = f(·), (1.6)

i.e. v(t, x1, . . . , xN ) = EX1(0)=x1,...,XN (0)=xN
[f(X1(t), . . . , XN (t))]. Our main instruments in this

paper are:

– De Giorgi’s method, but ran in Lp with p chosen sufficiently large, in order to relax the

assumptions on the strength of interactions.

– A “desingularization theorem” obtained, using ideas of Nash, in the paper with Semënov and

Szczypkowski [38].

We impose conditions on the interaction kernels Kij stated in the form of quadratic form

inequalities, see (1.7) and (2.10), (2.12). The reason for this is two-fold. First, as we explain

below, such conditions are ultimate in the sense that they provide a minimal PDE theory for the

Kolmogorov equation (1.6); at the same time, there is a well developed machinery that allows

to verify these conditions, see Example 1. Second, these conditions provide a natural setting for

controlling the strength of interactions when N is large, see discussion after Theorem A.

Our class of general interaction kernels is given by Definition 1. We postpone the definition of

our class of repulsing-attracting interaction kernels until the next section.

Let Lp = Lp(Rd) denote the Lebesgue spaces endowed with the norm ‖ · ‖p. Let W 1,p be the

corresponding Sobolev spaces. Denote by [Lp]d the space of vector fields Rd → R
d with entries in

Lp.
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Definition 1. A Borel measurable vector field K : R
d → R

d is said to be form-bounded if

K ∈ [L2
loc]

d and there exists constant κ (“form-bound of K”) such that

‖Kϕ‖22 ≤ κ‖∇ϕ‖22 + cκ‖ϕ‖22 ∀ϕ ∈W 1,2 (1.7)

for some cκ <∞.

In other words,

|K|2 ≤ κ(−∆) + cκ

in the sense of quadratic forms in L2, which yields upon applying Cauchy-Schwarz inequaltiy

K · ∇ ≤
√
κ(−∆) +

cκ
2
√
κ
.

We abbreviate (1.7) as K ∈ Fκ.

The class Fκ is a well known in the PDE literature condition on first-order perturbation in

elliptic and parabolic operators. Moreover, unlike, say, the optimal Lebesgue class |Kij | ∈ Ld, a

larger class Kij ∈ Fκ is in a sense ultimate from the PDE perspective: assuming κ < ( N
N−1 )

2, it

provides coercivity of the quadratic form of the corresponding Kolmogorov backward operator in

L2(RNd):

Λ = −∆x +
1

N

N
∑

i=1

N
∑

j=1,j 6=i
Kij(xi − xj) · ∇xi

, x = (x1, . . . , xN ) ∈ R
Nd. (1.8)

Keeping in mind the connection between (1.1) and the Kolmogorov backward equation, it is natu-

ral for us to focus on the assumptions on Kij that provide some “minimal theory” of Kolmogorov

operator (1.8).

As the next Example 1(2) shows, the strength of attraction κ in model system (1.2) is a

particular case of the form-bound κ in Definition 1.

Example 1. The following are some sufficient conditions for K ∈ Fκ stated in elementary terms:

1.

|K| ∈ Ld ⇒ K ∈ Fκ, (1.9)

with κ that can be chosen arbitrarily small. (As a consequence, we obtain that the blow

up effects described above in (a)-(c) can not be observed if we restrict our attention to

|K| ∈ Ld. That said, the situation with the Lebesgue class drifts in the Keller-Segel model

(d) is different because the regularity of the nonlinear drift K1 ∗ ρ also depends on the

regularity of the initial condition ρ0 and is improving as q in ρ0 ∈ Lq increases.)

Indeed, for every ε > 0 we can representK = K1+K2 with ‖K1‖d < ε and ‖K2‖∞ <∞.

So, we obtain, using the Sobolev embedding theorem,

‖Kϕ‖22 ≤ 2‖K1‖2d‖ϕ‖22d
d−2

+ 2‖K2‖2∞‖ϕ‖22
≤ CS2‖K1‖2d‖∇ϕ‖22 + 2‖K2‖2∞‖ϕ‖22,

hence K ∈ Fκ with κ = CS2ε and cκ = 2‖K2‖2∞.
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Of course, above κ can be chosen arbitrarily small at expense of increasing cκ. Although

in some questions the value of constant cκ is important (e.g. in the study of long term

behaviour of solution of (1.1)), they are not related to the problem of the blow up versus

well-posedness in (1.1).

2. (Critical point singularities) The model singular interaction kernel

K(y) = ±
√
κ
d− 2

2

y

|y|2 , y ∈ R
d, (1.10)

(+ is the attraction, − is the repulsion) is in Fκ with cκ = 0. This is a re-statement of

the well known Hardy inequality:

(d− 2)2

4

∥

∥|y|−1ϕ
∥

∥

2

2
≤ ‖∇ϕ‖22, ∀ϕ ∈W 1,2(Rd).

This inequality is sharp: K 6∈ Fκ′ for any κ′ < κ regardless of the value of cκ′ .

A finer example is given by the weighted Hardy inequality of [21]. Fix 0 ≤ Φ ∈ Lq(Sd−1)

for some q ≥ 2(d−2)2

2(d−1) + 1, where Sd−1 is the unit sphere in R
d. If

|K(y)|2 ≤ κ
(d− 2)2

4
c
Φ(y/|y|)

|y|2 , where c :=
|Sd−1| 1q

‖Φ‖Lq(Sd−1)

,

then K ∈ Fκ with cκ = 0. Using this example, one can e.g. cut off a wedge in the model

interaction kernel (1.10) while still controlling the value of the strength of interaction κ.

3. (Weak Ld class interaction kernels) More generally, vector fields K in Ld,∞, i.e. such that

‖K‖d,∞ := sup
s>0

s|{y ∈ R
d : |K(y)| > s}|1/d <∞ (1.11)

are in Fκ with
√
κ = ‖K‖d,∞|B1(0)|−

1
d

2
d−2 , see [40]. When applied to (1.10), this inclusion

gives the constant in Hardy’s inequality.

4. (Morrey class interaction kernels) The scaling-invariant Morrey class M2+ε, with ε > 0

fixed arbitrarily small, consists of vector fields K ∈ [L2+ε
loc ]d such that

‖K‖M2+ε
:= sup

r>0,y∈Rd

r

(

1

|Br(y)|

∫

Br(y)

|K|2+εdy
)

1
2+ε

<∞. (1.12)

By one of the results in [14], if K ∈ M2+ε, then K ∈ Fκ with κ = c‖K‖M2+ε
for

a constant c = c(d, ε) that depends on the constants in some classical inequalities of

Harmonic Analysis.

This sufficient condition for form-boundedness can be further refined by considering

the Chang-Wilson-Wolff class [11]: K ∈ [L2
loc]

d satisfies

‖K‖ξ := sup
r>0,y∈Rd

(

1

|Br(y)|

∫

Br(y)

|K|2 r2ξ
(

|K|2 r2
)

dy

)
1
2

<∞,

where ξ : [0,∞[→ [1,∞[ is an increasing function such that
∫∞
1

ds
sξ(s) <∞.

On the other hand, a simple argument with cutoff functions shows that the class of

form-bounded vector fields Fκ (say, cκ = 0) is contained in the Morrey class M2.
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It should be added that the cited results in [14, 11] appeared as a part of broader

efforts to find necessary and sufficient conditions for form-boundedness stated in ele-

mentary terms (in the context related to study of Schrödinger operators with singular

potentials, including self-adjointness, estimates on the number of bound states, resolvent

convergence).

5. (Hypersurface singularities) Any interaction kernel K satisfying

|K(y)|2 = C
c(y)1{ 1

2≤|y|≤ 3
2}

∣

∣|y| − 1
∣

∣(− ln
∣

∣|y| − 1
∣

∣)β
, β > 1. (1.13)

is form-bounded, which can be seen from the previous example by arguing locally. (Note

that the components of K are not in L2+ǫ
loc for any ǫ > 0; one can compare this with

example (i).)

The class of form-bounded vector fields Fκ is closed with respect to addition and multiplication

by functions from L∞ (up to change of κ and cκ). So, one can combine the previous examples.

Our main results, stated briefly, are as follows (omitting for now the repulsing-attracting inter-

action kernels):

Theorem A. (i) Let

Kij ∈ Fκ, κ < 4

(

N

N − 1

)2

.

Then there exists a strong Markov family of martingale solutions of particle system (1.1) that

delivers a unique (in appropriate sense) weak solution to Cauchy problem for the Kolmogorov

backward equation (1.6).

(ii) If κ is smaller than a certain explicit constant cd,N , then, moreover, conditional weak

uniqueness and strong existence hold for (1.1).

(iii) In the special case

Kij(y) =
√
κ
d− 2

2

y

|y|2 +K0,ij(y), K0,ij ∈ Fν ,

if the strength of attraction satisfies only κ < 16 and ν is sufficiently small, then the first assertion

in (i) still holds. Moreover, in the model attracting case

Kij(y) =
√
κ
d− 2

2

y

|y|2 , κ < 16

the heat kernel of (1.1) satisfies an explicit non-Gaussian upper bound that we believe to be optimal

in the regions where the particles are close to each other. (The constant 16 can be somewhat

improved in low dimensions.)

For detailed statements, see Theorems 1 and 2.

The improvement in the assumptions on κ in (iii) is due to the use of many-particle Hardy

inequality (1.20). In assertion (ii) constant cd,N ↓ 0 as the number of particles N ↑ ∞, which,

of course, is not what we are after in this paper. But we included this assertion anyway for the
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sake of completeness and to demonstrate that as the strength of interactions becomes smaller the

theory of (1.1) becomes more detailed.

We address the problem of well-posedness of stochastic particle system (1.1) directly, by rewrit-

ing (1.1) as SDE

dZ = −b(Z)dt+
√
2dB, B is a Brownian motion in R

Nd (1.14)

with Z = (X1, . . . , XN ) and drift

b = (b1, . . . , bN ) : RNd → R
Nd,

where bi(x) :=
1

N

N
∑

j=1,j 6=i
Kij(xi − xj), x = (x1, . . . , xN ) ∈ R

Nd, 1 ≤ i ≤ N, (1.15)

and then applying results on well-posedness for SDEs with general drifts, in particular, our The-

orem 3 below. Until recently, the results on general singular SDEs could not compete, in terms of

the admissible point singularities of the drift, with the results on particle systems with singular

interactions. However, in the past few years, there was a substantial progress in proving weak

and strong well-posedness of SDE (1.14) with general drift b, which now can have critical-order

singularities (i.e. reach blow up effects), see [31, 32, 29, 28, 42, 43, 44, 48]. That said, to apply

these results to particle system (1.1) when the number of particles is large in a way that would

allow to control the strength of interactions (measured, in our case, by constant κ), one needs

to keep track of the strength of the singularities of the drift b (in our case, measured by its own

form-bound with respect to the Laplacian in R
Nd). In Lemma 1 we show that if Kij ∈ Fκ(R

d),

then b satisfies

{

b ∈ Fδ(R
Nd)

with δ = (N−1)2

N2 κ, cδ =
(N−1)2

N cκ.
(1.16)

(Note that if cκ = 0, as is the case for (1.10), then cδ = 0.) Thus, we obtain our Theorem 1 and

Theorem 2(i)-(iii) for particle system (1.1) from our results on the general singular SDE (1.14)

in R
Nd, which are Theorems 3, 4.

In this approach, it is crucial that the assumptions on the form-bound δ of drift b in Theorem

3 stay dimension-independent, so that when Theorem 3 is applied to particle system (1.1) the

resulting assumption on κ would not depend on the number of particles N (or, rather, would tend

to a strictly positive value as the number of particles goes to infinity). This is achieved by means

of De Giorgi’s method ran in Lp which allows us to “decouple” the proof of the tightness estimate

needed to establish the existence of a martingale solution (cf. (2.23)) from any strong gradient

bounds on solutions of the corresponding elliptic or parabolic equations that, generally speaking,

introduce a dependence on the dimension in the assumptions on the form-bound of b.

Running De Giorgi’s method in Lp with p ≫ 2 allows to maximize admissible values of the

form bounds/strengths of interactions in particle system (1.1). At the level of strongly continuous

semigroups, the observation that working in Lp with p large allows to relax the assumptions on

the form-bound of the drift was made even earlier in [41].
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By the way, in Remark 5 we discuss the theory of the backward Kolmogorov equation (1.6) in

the case when the strength of the interactions reaches κ the borderline value, which requires us

to work in the Orlicz space with “critical” gauge function cosh−1 (that is, in some sense, a limit

of Lp as p ↑ ∞).

The strong existence in Theorem 1(iv) (or in Theorem A(ii)) follows from the result in [29]

whose proof, in turn, is a modification of the method of Röckner-Zhao [49].

Theorems 3, 4 on the general singular SDE (1.14) are of interest on their own.

Theorem 3 deals with the existence and uniqueness of a strong Markov family of martingale

solutions of SDE (1.14). In a number of ways, Theorem 3 continues the paper with Semënov [32],

see further discussion in Section 2.3.

Theorem 4 deals with conditional weak uniqueness for (1.14), i.e. the uniqueness among weak

solutions satisfying a rather natural condition (Krylov-type bound). The main novelty of Theorem

4 is related to condition (B2) that takes into account the repulsion-attraction structure of the drift.

However, in its present form this condition, when applied to particle system (1.1), imposes not so

natural conditions on the repulsing part of the interactions (i.e. admissible strength of repulsion

depends on the number of particles, see the last comment before Section 2.3), so for now we leave

this result at the level of general singular SDEs.

1.1. About the proofs. The analytic core of the paper are Theorems 5, 6 and 7 from which

Theorems 3 and 4 for general singular SDEs follow.

In Theorem 5 we prove Hölder continuity of solutions to the elliptic counterpart of the Kol-

mogorov backward equation (1.6), i.e. (λ−∆+ b · ∇)u = f , f ∈ C∞
c , where b can, in particular,

be defined by (1.15). This is needed to prove the strong Markov property for the martingale

solutions in Theorem 3. Theorem 5 is proved by showing that solution of the elliptic Kolmogorov

equation u belongs to appropriate Lp De Giorgi’s classes and then following De Giorgi’s method.

These De Giorgi classes, however, are somewhat different from the Lp De Giorgi classes found in

the literature (cf. [17]), i.e. they contain the integrals of

|∇(u− k)
p/2
+ |2, k ∈ R, (1.17)

rather than the integrals of |∇(u− k)+|p.
Theorem 6, i.e. an embedding theorem for a family of non-homogeneous elliptic Kolmogorov

equations that includes

(λ−∆+ b · ∇)u = |b|f, f ∈ C∞
c , (1.18)

is needed to construct martingale solutions in Theorem 3. It also has other uses e.g.we apply

it in subsequent paper [37] to construct strongly continuous Feller semigroup with general form-

bounded drift with form-bound in the critical range δ < 4. The proof of Theorem 6 also uses De

Giorgi’s method. Although the assertion of Theorem 6 is a global L∞ estimate on u in terms of

a certain Lp norm of the right-hand side, its proof is local. Otherwise we would have to impose

an additional global condition on b that would be difficult to verify for b given by (1.15). Also,

we will need an intermediate result in the proof of Theorem 6 in order to establish a “separation

property”, i.e. that u is small far away from the support of f .
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The point of departure of De Giorgi’s method is the Caccioppoli inequality. To prove it under

the repulsing-attracting form-boundedness type condition of Definitions 3, 4, we extend the iter-

ation procedure (“Caccioppoli’s iterations”) introduced in an earlier paper with Vafadar [39] to

the non-homogeneous Lp setting, as is needed to handle weak well-posedness of SDEs.

Finally, Theorem 7, needed to prove Theorem 4 on conditional weak uniqueness, contains rather

strong gradient bounds on solution of (1.18). Its proof uses a quite ingeniously constructed test

function of [41], see comments after Theorem 7.

1.2. More on the existing results. (i) Gradient form interaction kernels

K = ∇V : Rd → R
d (1.19)

for some potential V on R
d play a crucial role in Statistical Physics. We refer to [3, 45], see also

references therein. In particular, in [45] the authors proved strong well-posedness of the particle

system in R
Nd \∪1≤i<j≤N{((x1, . . . , xN ) ∈ R

Nd | xi = xj} for very singular interaction potentials

satisfying some fairly general assumptions (however, excluding purely attracting singular inter-

actions such as the ones in (1.2), covered as a special case by Theorems 1, 2). For instance, the

result in [45, Sect. 9.2] yields strong well-posedness of the particle system for potential

V (x) = |x|−10

(

2 + sin
1

|x|

)

.

The corresponding interaction kernel K = −10|x|−12x
(

2 + sin( 1
|x|)

)

− |x|−13x cos( 1
|x|) oscillates

between the repulsion and the attraction as x approaches the origin. The repulsion on average

dominates the attraction. Still, our results do not cover such interactions. In fact, although in

Theorem 2 our condition on the repulsing part of K is much weaker than the condition on the

attracting part of K, it is still a global condition: (divK)− ∈ L1(Rd) + L∞(Rd).

See also [9, 10] regarding the Dirichlet form approach to the problem of well-posedness of

particle systems with gradient form interactions.

We also mention [8] where the authors work at the PDE level on the torus, consider interaction

kernels of gradient form with the interaction potential V pointwise comparable to
√
κd−2

2 log |x|
(which thus includes the attracting kernel in (1.10)) and, importantly, obtain quantitative esti-

mates on the propagation of chaos for the McKean-Vlasov PDE for all κ < 16( d
d−2)

2.

(ii) The present paper deals with general singular interactions, i.e. not having a particular

structure such as gradient form. In particular, we refer to [19, 52] where the authors prove, as

a part of their results on the propagation of chaos, well-posedness of particle system (1.1) for

interaction kernels K in the sub-critical Ladyzhenskaya-Prodi-Serrin class. Applied to (1.1) (with

Kij = K), their condition reads as

|K| ∈ Lp + L∞ (i.e. sum of two functions), p > d.

See [9] regarding time-homogeneous critical LPS class

|K| ∈ Ld + L∞. (LPS)

The class of form-bounded interactions kernels Fκ is larger than (LPS) and, moreover, contains

some interaction kernels that are strictly more singular than the ones in (LPS), such as (1.10).
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However, here we are not comparing our results with papers [9, 19, 52] since we do not prove the

existence of a mean field limit and its uniqueness.

Let us also make the following two comments regarding the relationship between class (LPS)

and class Fκ:

– One advantage of the Lebesgue scale condition (LPS) is that it is easy to verify. However,

it is not necessarily easy to deal with when one considers particle systems of type (1.1)

for N large. Indeed, if, in order to prove well-posedness of (1.1) we were to consider this

particle system as a special case of general SDE (1.14) in R
Nd, then the well-posedness

results on the Lebesgue scale for (1.14) would require |b| ∈ Lq(RNd) +L∞(RNd), q > Nd

(see [45]) or q = Nd (see [7]). Clearly, this severely restricts the class of admissible

interaction kernels Kij = K in (1.15). There is a finer argument due to [19] that still

allows to prove strong well-posedness of (1.1) for K ∈ Lp(Rd)+L∞(Rd), p > d, regardless

of the number of particles N , but it requires extra work.

On the other hand, form-boundedness handles transition from from-bounded Kij on

R
d to form-bounded b given by (1.15) on R

Nd rather effortlessly, see (1.16). Moreover,

crucially for particle systems, it allows to keep track of the values of the form-bounds

(= strengths of interactions) regardless of the number of particles N . (To borrow an

expression from [9], the present work can be viewed as a “propaganda piece” for form-

boundedness and similar conditions in the context of particle systems and singular SDEs.)

– Consider drift b : Rd → R
d. If u is a weak solution of the elliptic equation (λ−∆+b·∇)u =

f , λ > 0, f ∈ C∞
c with b ∈ Ld + L∞ and u ∈ W 1,r (e.g. using Theorem 7) for r large,

then, by Hölder’s inequality,

∆u ∈ L
rd

d+r

loc .

However, for b ∈ Fδ, one can only say that

∆u ∈ L
2d

d+2

loc

(in fact, one can show that u ∈ W 2,2). That is, if b is only form-bounded then there are

no W 2,p estimates on u for p large.

Regarding general singular interactions, let us also mention a model of the dynamics of neu-

roreceptors considered in [46] where the fact that a neurotransmitter, after it gets attached to a

fixed neuroreceptor, prevents other neurotransmitters from entering, is modelled by introducing

singular repulsing interactions between neurotransmitters in some regions on space. It is thus

desirable to be able to handle interaction kernels with critical singularities that stay admissible

after one multiplies them by indicator functions (so that the interactions can be turned on or

turned off depending on the positions of the particles relative to each other and in space), as

e.g. the class of form-bounded interaction kernels considered in the present work.

(iii) De Giorgi’s method was used earlier in the context of singular SDEs in [48, 56, 58]. There

the authors considered singular drifts arising in the study of 3D Navier-Stokes equations.
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(iv) In dimensions d ≥ 3 one does not obtain the Keller-Segel equation (1.5) as the mean

field limit of particle system (1.2) since, evidently, there is a gap between the singularity of

kernel K1(y) = cd|y|−dy in (1.5) and the singularity of kernel K(y) = cd|y|−2y in (1.2) (that, we

know, is already critical). Nevertheless, it is known in the literature on the Keller-Segel equation

[23, 13] that requiring extra regularity of the initial distribution ρ0 ∈ Ld/2, one can extend it to

ρ ∈ L∞(R+, L
d/2), in which case, by Young’s inequality,

(K1 ∗ ρ)(t, ·) ∈ Ld, t ≥ 0,

i.e. the drift belongs to still admissible critical time-inhomogeneous Ladyzhenskaya-Prodi-Serrin

class. (By the way, repeating the argument in Example 1(1), one sees that drift (K1 ∗ ρ)(t, ·)
belongs to the class of time-inhomogeneous form-bounded vector fields, i.e. for a.e. t ∈ R+

‖b(t, ·)ϕ‖22 ≤ δ‖∇ϕ‖22 + cδ‖ϕ‖22 ∀ϕ ∈W 1,2,

which, in principle, puts the corresponding Keller-Segel equation within the reach of our methods,

at least at the level of a priori Sobolev regularity estimates, see Remark 4.)

The observation that to handle the d-dimensional Keller-Segel model one can use energy meth-

ods in Lp with p large (larger than d
2 ) goes back already to [23, 13].

We also use energy methods in Lp with p large, but we do it for a different purpose, i.e. to

relax the assumption of the strength of interactions κ. Furthermore, in the present paper we face

another situation where one needs to work in Lp with large p. That is, in presence of repulsing-

attracting structure in the drift b we can replace the form-boundedness requirement by a more

general condition (“multiplicative form-boundedness”, cf. Theorem 3). Now, to treat the right-

hand side of nonhomogeneous equation (1.18), which is the analytic object behind the SDE with

drift b, we need an additional condition

|b| 1+α
2 ∈ Fχ for some χ <∞, α ∈]0, 1[,

where p′ := p
p−1 ≤ 1 + α. This extra condition is least restrictive if α is small, which forces us to

consider large p. See Remark 3 for more details.

(v) We also mention recent results in [12] on interacting particle systems and McKean-Vlasov

SDEs with distributional interaction kernels in Besov spaces (see also references therein). The as-

sumptions of [12] are somewhat orthogonal to the present work and, at least at the moment, do not

include the model interaction kernels (1.10) (while including other quite irregular distributional

kernels) or keep track of the strength of interactions κ.

(vi) In what follows, we refer to a well known in the literature on parabolic PDEs and singular

SDEs classification of drifts:

– Sub-critical case if, upon zooming into small scales, i.e. applying parabolic scaling in

(∂t −∆+ b · ∇)v = 0 in R
d

or in

Yt = y −
∫ t

0

b(Ys)ds+
√
2Bt, y ∈ R

d,

the drift term vanishes. For instance, b ∈ [Lq]d, q > d is sub-critical.
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– Critical case if zooming into small scales does not change the “norm” of the drift.

For instance, parabolic scaling does not change the form-bound of the drift or its Ld

norm. So, both Fδ and [Ld]d are critical classes. Note that this classification does not

distinguish between critical drifts that reach blow up effects, such as b ∈ Fδ, and drifts

that do not reach blow up effects, such as b ∈ [Ld]d. In other words, one can multiply

the latter by arbitrarily large constant without affecting well-posedness of the SDE, while

form-bounded drifts can in general “sense” this multiplication (since it, obviously, changes

the form-bound, which cannot be too large, see the beginning of the introduction). In

order to distinguish between these two very different cases, we say that the former have

critical-order singularities.

We also consider in the present paper other critical classes of drifts, such as multiplica-

tively form-bounded drifts (Definition 2.12) and weakly form-bounded drifts (Remark 9)

that expand the class of form-bounded vector fields Fδ rather substantially.

– Super-critical case if zooming into small scales actually increases the “norm” of the drift.

For instance, b ∈ Lq, q < d, is super-critical. Let us add that all known results on super-

critical drifts b require critical positive part of div b. This, of course, includes important

case div b = 0.

In Remark 10 we comment on the existing literature on PDEs and SDEs with super-critical

drifts. Briefly, super-criticality of the drift destroys many basic regularity results, but some parts

of the theory can be salvaged.

(vii) As was indicated above, the proof of Theorem 2(iii) uses the many-particle Hardy in-

equality of [22]: for d ≥ 3, all N ≥ 2,

Cd,N
∑

1≤i<j≤N

∫

RNd

|ϕ(x)|2
|xi − xj|2

dx ≤
∫

RNd

|∇ϕ(x)|2dx, x = (x1, . . . , xN), (1.20)

for all ϕ ∈W 1,2(RNd), where

Cd,N := (d− 2)2max

{

1

N
,

1

1 +
√

1 + 3(d−2)2

2(d−1)2 (N − 1)(N − 2)

}

.

In the proof we replace constant Cd,N with smaller constant (d−2)2

N . However, the maximum for

large N and d ≤ 6 in the definition of Cd,N is attained in the second argument. So, the constraint

κ < 16 in Theorem 2(iii) (or in Theorem A(iii)) can be somewhat relaxed for d ≤ 6.

The authors of [22] also provide, among other results, an upper bound on the constant in (1.20).

At the moment of writing of this article, to the best of author’s knowledge, the optimal constant

in (1.20) is not known.

It is natural to expect that the relationship between Theorem 2(iii) and the many-particle

Hardy inequality (1.20) goes both ways, i.e. there is a direct relationship between the optimal

constant in many-particle Hardy inequality (1.20) and the critical threshold value of κ that sepa-

rates well-posedness of particle system (1.2) from a blow up, in which case Monte-Carlo simulations

for (1.2) should produce the optimal Cd,N in (1.20); we pursue this in [18].
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1.3. Notations. Put

〈f〉 :=
∫

Rd

f(y)dy, 〈f, g〉 := 〈fg〉

(all functions in this paper are real-valued). For vector fields b, f : Rd → R
d, we put

〈b, f〉 := 〈b · f〉 (· is the inner product in R
d).

Let ‖ · ‖p→q denote the L
p → Lq operator norm. Let C∞ denote the space of continuous functions

on R
d vanishing at infinity, endowed with the sup-norm. Let BR(y) ⊂ R

d be the open ball of

radius R centered at y ∈ R
d, |BR(x)| denotes its volume. Set BR := BR(0). Given a function f ,

we denote its positive and negative parts by

(f)+ := f ∨ 0, (f)− := −(f ∧ 0).

Set

γ(x) :=

{

c exp
(

1
|x|2−1

)

if |x| < 1,

0, if |x| > 1,

where c is adjusted to
∫

Rd γ(x)dx = 1, and put γε(x) := 1
εd
γ
(

x
ε

)

, ε > 0, x ∈ R
d. Define the

Friedrichs mollifier of a function h ∈ L1
loc (or a vector field with entries in L1

loc) by

Eεh := γε ∗ h.

Acknowledgements. The author is sincerely grateful to the anonymous referee for making a

number of very useful comments.

2. Particle systems

For brevity, we will consider first the particle system without the drift terms M (Xi):

Xi(t) = xi −
1

N

N
∑

j=1,j 6=i

∫ t

0

Kij

(

Xi(s)−Xj(s)
)

ds+
√
2Bi(t), 1 ≤ i ≤ N, t ∈ [0, T ], (2.1)

where x = (x1, . . . , xN) ∈ R
Nd, N ≥ 2. However, we will explain in Remark 6 below how to put

the drifts back there.

Let et : C([0, T ],R
Nd) → R

Nd be defined by

et(ω) := ωt.

Recall that a probability measure Px (x ∈ R
Nd) on the canonical space of continuous trajectories

ω = (ω1, . . . , ωN ) in R
Nd is called a martingale solution to particle system (2.1) on [0, T ] if

1)

Px,0 = δx,

where Px,t := P ◦ e−1
t (on R

Nd),
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2)

Ex

N
∑

i=1

N
∑

j=1,j 6=i

∫ T

0

|Kij(ω
i
t − ωjt )|dt <∞,

3) for every φ ∈ C2
c (R

Nd) the process

[0, T ] ∋ r 7→ φ(ωr)− φ(x) +

∫ r

0

(

−∆yφ(ωt) +
1

N

N
∑

i=1

N
∑

j=1,j 6=i
Kij(ω

i
t − ωjt ) · ∇yiφ(ωt)

)

dt

is a martingale under Px.

We will also need the following definition. Let K satisfy (1.7), let {Kn} be some sequence of

vector fields (in what follows, Kn will be more regular than K).

Definition 2. Let us say that {Kn} does not increase the form-bounds of K if for every n ≥ 1

‖Knϕ‖22 ≤ κ‖∇ϕ‖22 + cκ‖ϕ‖22 ∀ϕ ∈ W 1,2(Rd),

i.e. {Kn} satisfy (1.7) with the same constants as K.

2.1. General interaction kernels.

Theorem 1 (General interactions). Assume that the interaction kernels Kij in particle system

(2.1) satisfy

Kij ∈ Fκ with κ < 4

(

N

N − 1

)2

(2.2)

(see Definition 1). Then the following are true:

(i) There exists a strong Markov family of martingale solutions {Px}x∈RNd of particle system

(2.1).

(ii) The function

u(x) := EPx

∫ ∞

0

e−λsf(ω1
s , . . . , ω

N
s )ds, x ∈ R

Nd, f ∈ C∞
c (RNd), (2.3)

where λ is assumed to be sufficiently large, is a locally Hölder continuous weak solution

to elliptic Kolmogorov equation
(

λ−∆+
1

N

N
∑

i=1

N
∑

j=1,j 6=i
Kij(xi − xj) · ∇xi

)

u = f, x = (x1, . . . , xN ), (2.4)

see definitions in Remark 7 where we also discuss the uniqueness of u.

(iii) Fix p > 2
2−N−1

N

√
κ
. The family of operators {Pt}t≥0 defined by

Ptf(x) := EPx
[f(ω1

t , . . . , ω
N
t )], f ∈ C∞

c (RNd),

admits extension by continuity to a strongly continuous quasi contraction Markov semi-

group on Lp of integral operators, say Pt =: e−tΛp , such that

‖e−tΛp‖p→q ≤ cwωtt−
Nd
2 ( 1

p− 1
q ), p ≤ q ≤ ∞ (2.5)
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for appropriate constants c and ω. In view of (2.5), Dunford-Pettis’ theorem yields that

e−tΛp is a semigroup of integral operators. Their integral kernel e−tΛ(x, z) does not depend
on p and is defined to be the heat kernel of particle system (2.1).

If p = 2, then we have

Λ2 ⊃ −∆+
1

N

N
∑

i=1

N
∑

j=1,j 6=i
Kij(xi − xj) · ∇xi

↾ C∞
c (RNd).

The semigroup e−tΛp is unique among semigroups that can be constructed via approxi-

mation, i.e. for any sequence of bounded smooth interaction kernels {Kn
ij},

Kn
ij → Kij in [L2

loc(R
d)]d,

that do not increase the form-bounds of K, for every f ∈ C∞
c (RNd) solutions {vn} to

(

∂t −∆+
1

N

N
∑

i=1

N
∑

j=1,j 6=i
Kn
ij(xi − xj) · ∇xi

)

vn = 0, vn(0) = f

converge to the same limit e−tΛpf in Lp(RNd) loc. uniformly in t ≥ 0.

(iv) If, furthermore,

κ <
1

(N − 1)2d2
,

then for every initial configuration x = (x1, . . . , xN) ∈ R
Nd martingale solution Px satis-

fies for a given q ∈]Nd, N
N−1κ

− 1
2 [ Krylov-type bounds

EPx

∫ T

0

|h(s, ω1
s , . . . , ω

N
s )|ds ≤ c‖h‖Lq([0,T ]×RNd) (2.6)

and

EPx

∫ T

0

|b(ω1
s , . . . , ω

N
s )||h(τ, ω1

s , . . . , ω
N
s )|ds ≤ c‖b|h| q2 ‖

2
q

L2([0,T ]×RNd)
, (2.7)

for all h ∈ Cc([0, T ]×R
Nd), for some constant c > 0, where vector field b = (b1, . . . , bN ) :

R
Nd → R

Nd is defined by

bi(x) :=
1

N

N
∑

j=1,j 6=i
Kij(xi − xj), x = (x1, . . . , xN) ∈ R

Nd, 1 ≤ i ≤ N.

Moreover, Px is the only martingale solution to (2.1) that satisfies (2.6), (2.7) (“con-

ditional weak uniqueness”).

(v) There exists constant C < 1 such that if Kij is of the form

Kij(xi, xi − xj) = ζ(xi)K
0
ij(xi − xj), (2.8)

with ζ having compact support, ‖ζ‖∞ ≤ 1, and K0
ij ∈ Fκ with

κ <
C

(N − 1)2d2
(2.9)
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(the previous assertions are valid for such interaction kernels as well), then for every initial

configuration (x1, . . . , xN ) ∈ R
Nd particle system (2.1) has a strong solution on [0, T ] that

is unique among all strong solutions defined on the same probability space satisfying (2.6),

(2.7).

We recall from the discussion in the introduction that if the strength of interactions κ is taken

to be too large then a weak solution to the particle system (2.1) can cease to exist. So, in Theorem

1(i) we are dealing with the critical scale of the strength of interactions.

Let us emphasize that as the strength of interactions κ becomes smaller, the theory of particle

system (2.1) in Theorem 1 becomes more detailed.

We are rather satisfied with the conditions on the interaction kernels Kij in Theorem 1(i)-

(iii) where the assumption on the strength of interactions κ “stabilizes” to a positive value as

the number of particles N → ∞, so, in principle, this opens up a possibility of studying the

existence of the mean field limit (see Remark 2). However, in assertions (iv), (v) of Theorem 1

the assumption on κ degenerates to zero as N goes to infinity, which seems to be a by-product of

our method of embedding particle system (2.1) in the general SDE (4.1). We comment more on

this below.

2.2. Attraction and repulsion. We now turn to the interaction kernels having a repulsion-

attraction structure. While the repulsion between the particles, in a sense, contributes towards

well-posedness of particle system (2.1) by preventing collisions, the attraction can lead to the blow

up effects (see the discussion in the introduction). We take into account the attraction between

the particles by looking at the positive part of the divergence of the interaction kernels Kij in

(2.1).

Definition 3. (divK)+ ∈ L1
loc is said to be form-bounded if there exists constant κ+ such that

〈(divK)+ϕ, ϕ〉 ≤ κ+‖∇ϕ‖22 + cκ+
‖ϕ‖22, ∀ϕ ∈ W 1,2, (2.10)

for some cκ+
.

We abbreviate (2.10), with a slight abuse of notation, as

(divK)
1
2
+ ∈ Fκ+

.

For example, the previous condition is satisfied if (divK)+ ∈ L
d
2 ,∞ (weak L

d
2 class). This includes,

of course, (divK)+ ∈ L
d
2 , in which case κ+ can be chosen arbitrarily small (cf. Example 1(1)).

Example 2. Let K be the model singular attracting kernel (1.10), i.e.K(y) =
√
κd−2

2
y

|y|2 . Then

divK =
√
κ
(d− 2)2

2
|y|−2,

so, by Hardy’s inequality (divK)
1
2
+ ∈ Fκ+

, κ+ = 2
√
κ, cκ+

= 0.

Regarding the negative part (divK)−, which is responsible for the repulsion between the par-

ticles, we will only impose a rather quite mild condition that (divK)− can be represented as the

sum of a function in L1(Rd) and a bounded function.
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Already the hypothesis (divKij)
1
2
+ ∈ Fκ+

allows one to easily prove, integrating by parts and

using Lemma 2, that solution v of the backward Kolmgorov equation for particle system (2.1)

(

∂t −∆+
1

N

N
∑

i=1

N
∑

j=1,j 6=i
Kij(xi − xj) · ∇xi

)

v = 0, v(0, ·) = f(·) in R
Nd

satisfies a quasi contraction estimate

‖v(t)‖p ≤ eωpt‖f‖p, t > 0 (2.11)

provided κ+ is not too large, for appropriate p and ωp. However, without any additional assump-

tions on the interaction kernels Kij themselves, there is no hope of advancing substantially farther

than (2.11). In fact, without conditions on Kij, even requiring divKij = 0, puts us firmly in the

super-critical regime (cf. (vi) the introduction), so even the proof of a priori Hölder continuity of

solution v or of solution to the corresponding elliptic equation becomes out of reach. We need a

condition on Kij that will put us back in the critical regime.

Definition 4. A vector field K ∈ [L1
loc]

d is said to be multiplicatively form-bounded if there

exists constant κ0 (“multiplicative form-bound”) such that

〈|K|ϕ, ϕ〉 ≤ κ0‖∇ϕ‖2‖ϕ‖2 + cκ0
‖ϕ‖22, ∀ϕ ∈W 1,2. (2.12)

We abbreviate (2.12) as

K ∈ MFκ0
.

It will be clear from the results below that the actual value of κ0 is not important for well-posedness

of the particle system (2.1); it is the value of κ+ that matters.

Note that the class of form-bounded vector field Fκ0
is also a critical class, so we could use it

here as well. However, our ultimate goal is to identify the optimal (least restrictive) assumptions

on Kij, so we will work with the broader class MFκ0
:

Example 3. (i) Every form-bounded vector field is multiplicatively form-bounded, but not

vice versa, see Remark 8. In particular, all vector fields listed in Example 1 are multi-

plicatively form-bounded.

(ii) The class MFκ0
contains the largest possible, up to the strict inequality in ε > 0, scaling-

invariant Morrey class M1+ε: if

‖K‖M1+ε
:= sup

r>0,y∈Rd

r

(

1

|Br(y)|

∫

Br(y)

|K|1+εdy
)

1
1+ε

<∞,

then

K ∈ MFκ0
, κ0 = c(d, ε)‖K‖M1+ε

,

see details in Remark 8. Here one can already see the gain in comparison with the class of

form-bounded vector field Fκ0
, which contains only M2+ε (and itself is contained in M2).
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(iii) If the following Morrey class condition is satisfied:

sup
r>0,y∈Rd

r2
(

1

|Br(y)|

∫

Br(y)

|(divK)+|1+εdy
)

1
1+ε

<∞,

then (divK)
1
2
+ ∈ Fκ+

with appropriate κ+.

It was demonstrated in [50] that condition b ∈ MFδ under additional divergence-free hypothesis

div b = 0 provides two-sided Gaussian bounds on the heat kernel of operator −∇·a ·∇+ b ·∇ with

uniformly elliptic measurable matrix a. (Of course, having (div b)
1
2 ∈ Fδ+ , as in the present paper,

destroys both the upper and the lower Gaussian bounds on the heat kernel even of −∆+ b · ∇.)

Put

F := {K | K ∈ Fκ0
for some κ0 <∞}

and

MF := {K | K ∈ MFκ0
for some κ0 <∞}.

Definition 2 extends naturally to K satisfying (2.12), (2.10) or (2.15) below. In all these cases,

in Section 6 we show that the vector fields Kn defined by

Kn := EεnK, εn ↓ 0, Eε is the Friedrichs mollifier, (2.13)

are bounded, smooth and do not increase the corresponding form-bounds of K.

Theorem 2 (Repulsing-attracting interactions). The following are true:

(i) Assume that the interaction kernels Kij in particle system (2.1) satisfy

Kij ∈ MF,

{

(divKij)− ∈ L1 + L∞,

(divKij)
1
2
+ ∈ Fκ+

with κ+ < 4 N
N−1

|Kij |
1+α
2 ∈ F (2.14)

for some α > 0 fixed arbitrarily close to zero. The assertions (i), (ii) of Theorem 1 are

valid for these interaction kernels as well.

(ii) Assume that Kij satisfy a more restrictive condition than (2.14) in Theorem 2:

Kij ∈ F,

{

(divKij)− ∈ L1 + L∞,

(divKij)
1
2
+ ∈ Fκ+

with κ+ < 4 N
N−1 .

(2.15)

Fix p > 4
4−N−1

N κ+
. Then assertion (iii) of Theorem 1 also remains valid.

(iii) Let

Kij(y) =
√
κ
d− 2

2
|y|−2y +K0,ij(y), y ∈ R

d. (2.16)

If the strength of attraction

κ < 16
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and K0,ij satisfy conditions (2.2) or (2.14) with sufficiently small form-bounds, then as-

sertions (i)-(iii) of Theorem 1 with p > 4
4−√

κ
remain valid.

(iv) Furthermore, for the model attracting interaction kernel

K(y) =
√
κ
d− 2

2
|y|−2y, κ < 16,

the previous assertions remain valid, the heat kernel e−tΛ(x, z) of particle system (2.1)

satisfies, up to modification on a measure zero set, the heat kernel bound

e−tΛ(x, z) ≤ Ct−
Nd
2

∏

1≤i<j≤N
η(t−

1
2 |zi − zj|), t ∈]0, T ],

for some C = CT , for all x ∈ R
Nd, z = (z1, . . . , zN ) ∈ R

Nd provided zi 6= zj (i 6= j), for

a fixed function 1 ≤ η ∈ C2(]0,∞[) such that

η(r) =

{

r−
√
κd−2

2
1
N 0 < r < 1,

2, r > 2.

Remark 1. The additional right-most condition on Kij in (2.14) is, generally speaking, much

weaker than the left-most condition (informally, the former treats |K| as a potential, while a

proper “potential analogue” of the drift perturbation K · ∇ would be |K|2). For instance, if we

were to state condition (2.14) on the scale of Lp spaces, then it would become

|K| ∈ Ld + L∞,

{

(divK)− ∈ L1 + L∞,

(divK)+ ∈ L
d
2 + L∞ |K| ∈ L

d
2 (1+α) + L∞,

where, recall, α > 0 is fixed arbitrarily small, i.e. the right-most condition follows from the left-

most one. The same would happen if we were working on the scale of scaling-invariant Morrey

spaces (cf. Example 1(4)).

The improvement of the assumptions on κ in Theorem 2(iii), compared to Theorem 1 and

Theorem 2(i),(ii), is due to a refinement of Lemma 2 by means of the many-particle Hardy

inequality (1.20) of [22].

The heat kernel bound in Theorem 2(iv) is not unexpected (although we could not find it in

the literature). Indeed, an elementary calculation shows that

ψ(x) :=
∏

1≤i<j≤N
|xi − xj|−

√
κ d−2

2
1
N .

is a Lyapunov function of the formal adjoint of Λ = −∆x−
√
κd−2

2
1
N

∑N
i=1

∑N
j=1,j 6=i

xi−xj

|xi−xj |2 ·∇xi
,

i.e. the following identity holds:

−∆xψ +
√
κ
d− 2

2

1

N

N
∑

i=1

∇xi

( N
∑

j=1,j 6=i

xi − xj
|xi − xj |2

ψ

)

= 0. (2.17)

One can expect that such Lyapunov function will appear as a multiple in the heat kernel bounds.

That said, the question of how to prove such an estimate is non-trivial due to singularities in the

drift. An interesting aspect of Theorem 2(iv) is its proof, which uses an abstract desingularization

result from [38], see Appendix A.
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In Theorem 2(iv), we expect to have two-sided bound

C1t
−Nd

2 e−
|x−y|2

c2t ϕt(y) ≤ e−tΛ(x, y) ≤ C3t
−Nd

2 e−
|x−y|2

c4t ϕt(y), (2.18)

where

ϕt(y) :=
∏

1≤i<j≤N
η(t−

1
2 |yi − yj|),

as is suggested by the analogous results for Kolmogorov operator −∆−√
κ|x|−2x · ∇, 0 < κ < 4

on R
d, see [47]. Moreover, there should be an analogous to Theorem 2(iv) and (2.18) result in

the case of attracting interactions, see [47] and [36] regarding −∆ +
√
κ|x|−2x · ∇, 0 < κ < ∞.

([36, 38] deal with the fractional Laplacian (−∆)α/2 perturbed by the model singular drift term

c|x|−αx · ∇, 1 < α < 2.)

One drawback of assertions (iv), (v) of Theorem 1 is the difficulty with taking into account

the repulsion/attraction structure of the interaction kernel K simply by looking at the divergence

of K, as we do in Theorem 2. That said, in what concerns conditional weak uniqueness for

the particle system (as in Theorem 1(iv)), in Theorem 4 we consider the general SDE (4.1)

and propose another condition on the drift b that provides conditional weak uniqueness for (4.1)

while taking into account the repulsion/attraction. We show in Example 4 that there is some

truth to this condition: it is always satisfied in dimensions d ≥ 4 for the model repulsing drift

b(x) = −
√
δ d−2

2 |x|−2x, regardless of the value for the form-bound δ > 0, as one would expect.

This requires us to obtain gradient bounds in Lq starting with q > d− 2, hence the need to work

in the elliptic setting. (In the parabolic setting we would need q > d.) Nevertheless, this result,

when applied via Lemma 2 to drift (2.19) with repulsing interactions Kij(y) = −√
κd−2

2 |y|−2y,

leads to a condition on κ that still depends on the number of particles N . So, there is still work

to be done to find a proper analogue of Theorem 4 for particle system (2.1).

2.3. Comments on the proofs of Theorems 1 and 2. It is not difficult to modify the proofs

of Theorems 1 and 2 to extend them to the sums of the interaction kernels satisfying (2.2) and

(2.14), under properly adjusted assumptions on the form-bounds.

We prove Theorems 1 and 2 by embedding particle system (2.1) in the general SDE (4.1)

considered in R
Nd, with drift b = (b1, . . . , bN ) : R

Nd → R
Nd defined by

bi(x) :=
1

N

N
∑

j=1,j 6=i
Kij(xi − xj), x = (x1, . . . , xN) ∈ R

Nd, 1 ≤ i ≤ N. (2.19)

Lemma 1. If Kij ∈ Fκ(R
d), then b defined by (2.19) satisfies
{

b ∈ Fδ(R
Nd)

with δ = (N−1)2

N2 κ, cδ =
(N−1)2

N cκ.

Lemma 2. If Kij ∈ MFκ(R
d), (divKij)

1
2
+ ∈ Fκ+

(Rd), |Kij|
1+α
2 ∈ Fσ(R

d), α ∈ [0, 1], then b

defined by (2.19) satisfies
{

b ∈ MFδ(R
Nd)

with δ = N−1√
N
κ, cδ = (N − 1)cκ,

(2.20)
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{

(div b)
1
2
+ ∈ Fδ+(R

Nd),

with δ+ = N−1
N κ+, cδ+ = (N − 1)cκ+

,
(2.21)

{

|b| 1+α
2 ∈ Fχ(R

Nd),

with χ = (N−1)1+α

N1+α σ, cχ = (N−1)1+α

Nα cσ.
(2.22)

Lemmas 1, 2 allow us to obtain the existence of a strong Markov family of martingale solutions

to (2.1) in Theorem 1(i), Theorem 2(i) from Theorem 3(i) for general SDE (4.1). Theorem 3,

and other results in Section 4 dealing with general singular drifts, are of interest on their own.

In Theorem 3 the family of martingale solutions for (4.1) is constructed by applying a tightness

argument where the central role belongs to the estimate

E

∫ t1

t0

|bε(Yε(s))|ds ≤ C(t1 − t0)
γ

1+γ , t0, t1 ∈ [0, T ] (2.23)

(this is (10.5)), where bε is a regularization of b that does not increase form-bounds δ, δ+ (see

Definition 2) in Lemmas 1, 2, and Yε is the strong solution of (4.1) with drift bε. Constants C,

γ > 0 are independent of ε.

To prove (2.23) and, furthermore, to prove the strong Markov property, we establish regularity

results for non-homogeneous elliptic PDEs (5.1) and (5.6). These are Theorems 5 and 6, obtained

via De Giorgi’s method ran in Lp, where p depends on the values of form-bounds δ and δ+.

Theorems 5 and 6 are the main analytic results in the present paper. We prove Theorem 5 by

showing that u belongs to Lp De Giorgi’s classes and then following the arguments in [17, Ch. 7],

that is, applying De Giorgi’s method. As was mentioned in the introduction, we deal with Lp De

Giorgi classes that are somewhat different from the Lp De Giorgi classes found in the literature

(cf. [17]).

Remark 2 (On the number of particles N → ∞ ). Let interaction kernel K satisfy (2.2). Then

in (2.23) γ =
√
2− 1 (see the proof of Theorem 3) and, by Lemma 1,

δ =
(N − 1)2

N2
κ, cδ =

(N − 1)2

N
cκ.

Let cκ = 0 (as is the case for the model singular interactions (1.10)), then cδ = 0. In turn, as

N → ∞, constant δ tends to κ. Thus, our assumptions on the form-bound withstand the passage

to the limit N → ∞. However, in the tightness estimate (2.23) applied to (2.19) the constant C

depends on N (this is because in the proof of (2.23) via De Giorgi’s method we apply Sobolev’s

embedding theorem on R
Nd, which becomes weaker as the dimension of the spaces increases, and

hence De Giorgi’s iterations converge slower). So, (2.23) does not allow to conclude the existence

of a mean field limit by arguing as e.g. in Fournier-Jourdain [15]. This is not surprising since

(2.23), as it is proved now, does not take into account the exchangeability hypothesis on (2.1)

even if we were to impose it.

In [32], we proved, using De Giorgi’s iterations in Lp, that the general SDE (4.1) with b ∈ Fδ,

δ < 4 has a martingale solution for every initial point. This result yields the existence of a

martingale solution part of Theorem 3 under condition (A1) on b, which we included in Theorem
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3 for the sake of completeness. In what concerns (A1), in the present paper we make the next

step and prove the strong Markov property.

Remark 3. One of the main observations of the present paper is related to condition (A2) of

Theorem 3. This condition dictates the multiplicative form-boundedness assumption (2.14) on

the interaction kernel K when the latter has repulsion-attraction structure. In (A2), we relax the

a priori condition |b| ∈ L2
loc as in (A1) to |b| ∈ L1+α

loc for α > 0 fixed arbitrarily small, aiming

at stronger hypersurface singularities of b (and thus of K). To achieve this, we once again need

to work in Lp for p large. In fact, when dealing with the right-hand side of non-homogeneous

equation

(µ−∆+ b · ∇)u = |b|f (f ∈ C∞
c ),

as is needed to prove weak well-posedness of the general SDE (4.1), we need to impose an extra

condition

|b| 1+α
2 ∈ Fχ for some χ <∞, α ∈]0, 1[,

which is related to p via inequality

p′ =
p

p− 1
≤ 1 + α

(cf. Theorem 6). If we were to consider this non-homogeneous equation in L2, we would have to

take α = 1, and so (A2) and (2.14) would force the old form-boundedness assumption on drift b,

i.e. as in (A1). This is another situation where one needs to work in Lp with p large, not related

to maximizing admissible values of the form-bounds.

Another technical novelty of the paper is Theorem 6, i.e. the embedding theorem, which has

applications beyond this paper, see [37].

As we already mentioned in the introduction, the proof of Caccioppoli’s inequality (Proposition

4) under assumption (2.14) uses an extension of the iteration procedure introduced in [39]. In [39],

the authors worked in L2 and used Moser’s method to prove the Harnack inequality for positive

solutions of (−∇ · a · ∇ + b · ∇)u = 0 with measurable uniformly elliptic matrix a and b ∈ MFδ,

δ <∞, provided that the form-bounds of the positive and the negative parts of div b satisfy some

sub-critical assumptions.

Assertion (iv) of Theorem 1 follows, after applying Lemma 1, from the result in [29] whose

proof, in turn, follows the method of Röckner-Zhao [49]. In [29] we needed a technical hypothesis

that b has compact support, hence the condition in (iv) on the support of ζ. That said, this

hypothesis can be removed in [29] by working with weights vanishing at infinity, which we plan

to pursue elsewhere.

3. Other remarks on Theorems 1, 2

Remark 4 (On McKean-Vlasov equation with form-bounded interaction kernel). If K ∈ Fκ,

then in the McKean-Vlasov PDE

∂tρ−∆ρ− div (ρK̃) = 0, K̃(t, ·) = K(·) ∗ ρ(t, ·), (3.1)
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with the initial condition ρ0 ≥ 0, 〈ρ0〉 = 1, the drift K̃ is a time-inhomogeneous form-bounded

vector field [0,∞[×R
d → R

d having the same form-bound as K, i.e. for a.e. t ∈ [0,∞[, for all

ϕ ∈ W 1,2,

〈|K̃(t)|2ϕ2〉 =
〈

|〈K(· − z)ρ(t, z)〉z|2ϕ2
〉

(apply Cauchy-Schwartz’ inequality and use 〈ρ(t, z)〉z = 1)

≤
〈

〈|K(· − z)|2ρ(t, z)〉zϕ2
〉

=
〈

〈|K(· − z)|2ϕ2〉ρ(t, z)
〉

z

(apply K ∈ Fκ and use again 〈ρ(t, z)〉z = 1)

≤ κ〈|∇ϕ|2〉+ cκ〈ϕ2〉.

Thus, in particular, all a priori estimates on solutions of the Kolmogorov forward equation with

time-inhomogeneous form-bounded drifts (which can be obtained e.g. using the dual version of

the method of [28]) transfer to solutions of McKean-Vlasov equation (3.1).

Remark 5 (Borderline strengths of interactions). Applying the result of [26] for general form-

bounded drifts b ∈ Fδ, δ ≤ 4, one can reach the borderline values of the strengths of interactions

κ = 4

(

N

N − 1

)2

if (2.2) holds, or

κ+ = 4
N

N − 1
if (2.15) holds

by considering the corresponding to (2.1) Kolmogorov backward equation in the Orlicz space with

gauge function Φ = cosh−1. This space is situated between all Lp and L∞ (paper [26] deals with

the dynamics of the torus but, as we show in subsequent paper [37], one can also work on R
d,

although at expense of requiring a fast vanishing of the drift at infinity).

This result can be viewed as some sort of dual variant of the theory of entropy solutions of the

forward Kolmogorov equation (regarding entropy solutions, see [9]). That said, it seems like one

can prove more by working with the backward Kolmogorov equation, e.g. construct strongly con-

tinuous semigroup for the borderline value of the form-bound in addition to the energy inequality

and the uniqueness of weak solution, see [26].

Remark 6 (Drifts). One can easily extend the proofs of Theorems 1, 2 to include particle system

dXi =Mi(Xi)dt−
1

N

N
∑

j=1,j 6=i
Kij(Xi −Xj)dt+

√
2dBi, 1 ≤ i ≤ N,

having singular drift terms

Mi ∈ Fµ, .

Let us discuss for simplicity the case when Kij satisfy (2.2). We require that µ, κ satisfy

(√
µ+

N − 1

N

√
κ
)2
< 4.
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We only need to embed this particle system into (4.1), i.e. prove an analogue of Lemma 1 for

vector field b = bM + bK with bM , bK : RNd → R
Nd having components

bMi (x) :=Mi(xi), bKi (x) :=
1

N

N
∑

j=1,j 6=i
Kij(xi − xj), 1 ≤ i ≤ N, (3.2)

and then e.g. use Theorem 3 for the general SDE (4.1). Repeating the proof of Lemma 1, we

obtain right away that

bK ∈ FδK (RNd) with δK =
(N − 1)2

N2
κ, cδK =

(N − 1)2

N
cκ

and

bM ∈ FδM (RNd) with δM = µ, cδM = Ncµ,

see Remark 11 in Section 7 for the proof. It remains to note that the sum of two form-bounded

vector fields is form-bounded, i.e. b = bM + bK is in Fδ with
√
δ =

√
δM +

√
δK , and δ must be

strictly less than 4, cf. Theorem 3.

Arguing similarly, one can treat general drifts Mi(X1, . . . , XN ) (1 ≤ i ≤ N) in the particle

system after adjusting the hypothesis on the form-bound, i.e. now δM = Nµ.

Remark 7 (On the uniqueness of weak solution to elliptic Kolmogorov PDE). Our most com-

plete uniqueness result for the Kolmogorov elliptic equation in (2.4) with the interaction kernels

satisfying (2.2) or (2.15) is proved in [26] on the torus, see Remark 5. Speaking of Rd, let us first

say a few words about the case of very sub-critical strengths of interactions.

Definition 5. If K satisfies (2.2) with κ < ( N
N−1 )

2, we say that u is a weak solution of (2.4) if

u ∈ W 1,2 ∩ L∞ and

µ〈u, ϕ〉+ 〈∇u,∇ϕ〉+ 1

N

〈 N
∑

i=1

N
∑

j=1,j 6=i
Kij(xi − xj) · ∇xi

u, ϕ

〉

= 〈f, ϕ〉

for every ϕ ∈W 1,2. (Recall that in (2.4) the initial function is bounded, so the solution is bounded

as well.)

Definition 6. If K satisfies (2.15) with κ+ < 2 N
N−1 , then u is a weak solution to (2.4) if u ∈

W 1,2 ∩ L∞ and

µ〈u, ϕ〉+ 〈∇u,∇ϕ〉

− 1

N

N
∑

i=1

N
∑

j=1,j 6=i

[

〈divKij(xi − xj)u, ϕ〉+ 〈Kij(xi − xj)u,∇xi
ϕ〉

]

= 〈f, ϕ〉

for all ϕ ∈W 1,2.

In both cases the uniqueness of the weak solution follows upon applying Lemmas 1, 2 and the

Lax-Milgram theorem in L2, i.e. we can take p = 2 in Theorem 1(iii), Theorem 2(ii).

In the general case, we need to consider (2.4) in Lp, where p is as in Theorem 1(iii) or Theorem

2(ii). In this regard, we refer to [50] for the definition of weak solution and results on weak

solutions of parabolic equations in Lp.



26 D.KINZEBULATOV

If K satisfies (2.14), then we can prove that u constructed in Theorem 2(i) is a weak solution

of (2.4) e.g. in the following sense.

Definition 7. If K satisfies (2.14), then we say that u is a weak solution of (2.4) if u ∈W 1,2
loc ∩L∞

and

µ〈u, ϕ〉+ 〈∇u,∇ϕ〉

− 1

N

N
∑

i=1

N
∑

j=1,j 6=i

[

〈divKij(xi − xj)u, ϕ〉+ 〈Kij(xi − xj)u,∇xi
ϕ〉

]

= 〈f, ϕ〉

for all ϕ ∈W 1,2
loc ∩ L∞

c (L∞
c are bounded functions with compact supports).

The latter is a way to establish a link between function u defined by (2.3) and the formal elliptic

equation (2.4). However, the proof of uniqueness of such a weak solution under condition (2.14)

remains elusive. Still, we can prove that u given by (2.3) is unique among weak solutions that

can be obtained via a reasonable regularization of K, see Theorem 3(v). Alternatively, we can

restrict our attention to the subclass of weakly form-bounded vector fields, see Remark 8, and

prove uniqueness via the Lax-Milgram theorem in the triple of Bessel potential spaces

W 1
2
,2 ⊂ W− 1

2
,2 ⊂ W− 3

2
,2,

where Wp,α := (λ−∆)−
α
2 Lp (rather than the standard W 1,2 ⊂ L2 ⊂ W−1,2), see [35], although

this comes at the cost of requiring that the weak form-bound of K (and therefore its multiplicative

form-bound κ0, cf. (3.4)) must be strictly less than 1.

Remark 8 (Sufficient condition for multiplicative form-boundedness). A Borel measurable vector

field K : Rd → R
d is said to belong to the class of weakly form-bounded vector fields F1/2

κ if

|K| ∈ L1
loc and

‖|K| 12 (λ−∆)−
1
4 ‖2→2 ≤

√
κ (L2 → L2 operator norm) (3.3)

for some λ > 0. We have

F1/2

κ ⊂ MFκ. (3.4)

Indeed, if K ∈ F1/2
κ , then, arguing as in [50], we have

〈|K|ϕ, ϕ〉 ≤ κ〈(λ−∆)
1
2ϕ, ϕ〉 ≤ κ‖(λ−∆)

1
2ϕ‖2‖ϕ‖2

= κ
√

‖∇ϕ‖22 + λ‖ϕ‖22‖ϕ‖2 ≤ κ‖∇ϕ‖2‖ϕ‖2 + κ
√
λ‖ϕ‖22,

i.e.K ∈ MFκ.

The class F1/2
κ (and therefore MFκ) contains the largest possible up to the strict inequality in

ε > 0 scaling-invariant Morrey class M1+ε, i.e. if

‖K‖M1+ε
:= sup

r>0,x∈Rd

r

(

1

|Br|

∫

Br(x)

|K|1+εdx
)

1
1+ε

<∞,

then M1+ε ⊂ F1/2
κ with κ = c(d, ε)‖K‖M1+ε

[1].



PARTICLE SYSTEMS WITH SINGULAR INTERACTIONS 27

It is easily seen that M1+ε is larger than M2, which, in turn, contains Fκ. That said, we also

need to control the form-bounds. In fact, we have

Fκ ⊂ F
1/2√
κ
. (3.5)

Indeed, rewriting K ∈ Fκ as

‖|K|(λ−∆)−
1
2 ‖2→2 ≤

√
κ

(with λ = cκ/κ), we obtain the required result by applying the Heinz inequality. In (3.5) we have

a proper inclusion because the class of weakly form-bounded vector fields also contains the Kato

class of vector fields ‖|K|(λ−∆)−
1
2 ‖∞ ≤ √

κ while Fκ does not (see [24, 33]).

Remark 9 (Stronger hypersurface singularities). We refer to [28] and [31] for the results on weak

well-posedness of general SDE (4.1) with drift b ∈ F
1/2

δ or with b in the time-inhomogeneous ana-

logue of the Morrey class M1+ε (it is quite close to F
1/2

δ but also covers critical-order singularities

of the drift in time). This allows to treat

b(x) = ± cx
∣

∣|x| − 1
∣

∣

1−γ η(x),

for a fixed 0 < γ < 1, c ∈ R and 0 ≤ η ∈ C∞
c , i.e. hypersurface singularities that are essentially

twice more singular than (1.13). That said, in these results the assumptions on the form-bound δ

are dimension-dependent. So, if we were to apply them to particle system (2.1) we would arrive

at the assumptions on the strength of interaction κ that degenerate to zero as N ↑ ∞ (i.e. are of

the form κ < C
(Nd)2 ), which is not what we are after in the present work.

4. SDEs with general singular drifts

Theorem 1 and Theorem 2 (excluding the heat kernel bound in assertion (iv)) are proved by

embedding particle system (2.1) in general SDE (4.1) via (1.15) and then applying Theorem 3

below. The general SDE, which we consider here, to lighten the notations, in R
d instead of RNd,

is

Y (t) = y −
∫ t

0

b
(

Y (s)
)

ds+
√
2B(t), t ∈ [0, T ], y ∈ R

d, (4.1)

where a priori b ∈ [L1
loc]

d, {B(t)}t≥0 is a Brownian motion in R
d,

Let us add that once we put the drifts in particle system (2.1) using Remark 6, we can obtain

most of Theorem 3 from Theorems 1 and 2 by taking all Kij = 0. So, thanks to Lemmas 1 and

2, our results on particle systems and general SDEs are, to a large extent, equivalent. Of course,

the heat kernel bound in Theorem 2(iv) is specific to particle systems. Also, Theorem 4 does not

have at the moment a particle system counterpart, although we believe that it is of interest on its

own.

Set

bn := Eεnb, εn ↓ 0, Eε is the Friedrichs mollifier, εn ↓ 0. (4.2)
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Theorem 3. Assume that a Borel measurable vector field b in SDE (4.1) satisfies one of the

following two conditions:

b ∈ Fδ with δ < 4 (A1)

or

b ∈ MF,







(div b)− ∈ L1 + L∞,

(div b)
1
2
+ ∈ Fδ+ with δ+ < 4,

|b| 1+α
2 ∈ F (A2)

for some α > 0 fixed arbitrarily small. Then the following are true:

(i) There exists a strong Markov family {Py}y∈Rd of martingale solutions of SDE (4.1), i.e.

Py[ω0 = y] = 1,

Ey

∫ T

0

|b(ωt)|dt <∞

and for every φ ∈ C2
c (R

d) the process

[0, T ] ∋ r 7→ φ(ωr)− φ(y) +

∫ r

0

(−∆+ b · ∇)φ(ωt)dt

is a martingale under Py.

(ii) The function

u(x) := EPx

∫ ∞

0

e−λsf(ωs)ds, x ∈ R
d, f ∈ C∞

c (Rd), (4.3)

where λ is assumed to be sufficiently large, is a locally Hölder continuous weak solution

to elliptic Kolmogorov equation
(

λ−∆+ b · ∇
)

u = f (see Remark 7 for the definitions).

In assertions (iii) and (iv) we replace condition (A2) with a somewhat more restrictive

hypothesis
{

b ∈ F,

(div b)
1
2
+ ∈ Fδ+ with δ+ < 4, (div b)

1
2
− ∈ L1 + L∞.

(A3)

If b satisfies (A1), fix p >
2

2−
√
δ
. If b satisfies (A3), fix p >

4
4−δ+ .

(iii) ([41, 50], see also [33]) The family of operators

Ptf(x) := EPx
[f(ωt)], t > 0, f ∈ C∞

c

admits extension by continuity to a strongly continuous quasi contraction Markov semi-

group on Lp, say, Pt =: e−tΛp, such that

‖e−tΛp‖p→q ≤ ceωtt−
d
2 (

1
p− 1

q ), p ≤ q ≤ ∞

for appropriate constants c and ω.
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The following approximation uniqueness result holds: for any sequence of bounded

smooth vector fields

bn → b in [L2
loc]

d

that do not increase the form-bounds on b in (A2) or (A3), the classical solutions vn to
(

∂t −∆+ bn · ∇
)

vn = 0, vn(0) = f ∈ C∞
c

converge to the same limit e−tΛpf in Lp loc. uniformly in t ≥ 0.

(iv) The resolvent (µ+ Λp(b))
−1 has Feller property, i.e. for each µ greater than some µ0 > 0

it extends by continuity to a bounded linear operator on C∞:

Rµ(b) :=
[

(µ+ Λp(b))
−1 ↾ Lp ∩ C∞

]clos

C∞→C∞
∈ B(C∞).

Moreover,

Rµ(bn) → Rµ(b) strongly in C∞, µ ≥ µ0,

where Rµ(bn) coincides with the resolvent of −∆+ bn · ∇ on C∞, n = 1, 2, . . .

(v) (Approximation uniqueness) If b satisfies
{

b ∈ MF,

(div b)− ∈ L1 + L∞, (div b)
1
2
+ ∈ Fδ+ with δ+ < 2,

(4.4)

then there exist generic constants λ0 > 0 and κ ∈]0, 1[ such that if, additionally, |b| ∈
L2−κ, then, for any sequence bn of bounded smooth vector fields satisfying (4.4) with the

same constants as b and such that bn → b in L2−κ , the sequence of the classical solutions

un to

(λ−∆+ bn · ∇)un = f, f ∈ C∞
c , λ ≥ λ0

converge in L2 to the same limit which, thus, does not depend on a particular choice of

{bn}.

In (iii) we can consider bn defined by (4.2).

In subsequent paper [37] we strengthen assertion (iv) by constructing strongly continuous Feller

semigroup in C∞ for −∆+ b · ∇, b ∈ Fδ, for all δ < 4.

Combining assertion (v) with Theorem 5, one can further show that the limit u is locally Hölder

continuous and is a weak solution of (µ −∆+ b · ∇)u = f . Furthermore, one can construct the

corresponding strongly continuous semigroup in Lp, but we will not pursue this here. We included

assertion (v) to emphasize that there is, in principle, nothing pathological from the point of view

of a posteriori estimates about condition b ∈ MF compared to b ∈ F used in (iii), (iv). That

said, the proof of assertion (v) is somewhat more involved than the proof of the uniqueness of the

limit in (iii) and uses Gehring’s lemma. It is ultimately an L2 argument, hence the need for a

more restrictive condition δ+ < 2 in (A3), see Remark 17 for details.

We need assertion (iv) of Theorem 3 in the proof of the following uniqueness result.
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Theorem 4 (Krylov-type estimates and conditional uniqueness). Assume that a Borel measurable

vector field b satisfies one of the following conditions:

b ∈ Fδ with δ <

(

2

q

)2

∧ 1 for some q > (d− 2) ∨ 2 (B1)

or














b ∈ Fδ ∩ [W 1,1
loc (R

d)]d for some finite δ, has symmetric Jacobian Db := (∇kbi)
d
k,i=1,

the normalized eigenvectors ej and eigenvalues λj ≥ 0 of the negative part of Db− div b
q I

for some q > (d− 2) ∨ 2 satisfy
√

λjej ∈ Fνjwith ν :=
∑d
j=1 νj <

4(q−1)
q2 .

(B2)

Then the following are true for the strong Markov family of martingale solutions of SDE (4.1)

constructed in Theorem 3:

(i) For every y ∈ R
d, martingale solution Py satisfies Krylov-type bound

EPy

∫ ∞

0

e−λs|gf |(ωs)ds ≤ C‖g|f | q2 ‖
2
q

2 , ∀ g ∈ F, ∀ f ∈ Cc, (4.5)

for q > (d− 2) ∨ 2 close to (d− 2) ∨ 2, for all λ sufficiently large.

(i′) {Py}y∈Rd is the only Markov family of martingale solutions to (4.1) that satisfies Krylov-

type bound in (i).

(ii) For every y ∈ R
d, Px satisfies Krylov bound:

EPy

∫ ∞

0

e−λs|f(ωs)|ds ≤ C‖f‖ qd
d+q−2

, ∀ f ∈ Cc (4.6)

for all λ sufficiently large.

(ii′) We make (4.6) more restrictive by selecting q close to (d−2)∨2, so that in (4.6) qd
d+q−2 =

d
2−ε ∧ 2

1−ε for some ε > 0 small. Let {P2
y}t∈Rd be another Markov family of martingale solutions

for (4.1) that satisfies Krylov bound

EP2
y

∫ ∞

0

e−λs|f |(ωs)ds ≤ C‖f‖ d
2−ε∧ 2

1−ε
, ∀ f ∈ Cc (4.7)

(one such family exists, it is {Py}y∈Rd from above). Assume additionally that, for some ε1 ∈]ε, 1[
we have

(1 + |x|−2)−β |b|
d

2−ε1
∨ 2

1−ε1 ∈ L1

for some β > d
2 fixed arbitrarily large, and either (B1) holds with δ < 4

q2∗
∧ 1, where

q∗ :=

{

d−2
ε1−ε if d ≥ 4,

2
(

1
3(ε1−ε) ∨ 1

)

if d = 3,

or (B2) holds with q = q∗ and ν < 4(q∗−1)
q2∗

. Then {P2
y}y∈Rd coincides with {Py}y∈Rd from above.

Some remarks are in order.
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1. In the last assertion, the uniqueness class of martingale solutions satisfying Krylov bound

(4.7), which depends on our choice of ε, determines the extra conditions that one needs

to impose on b. Note that if in (B1) one has |b| ∈ Ld, or in (B2) the eigenvectors have

entries in Ld, then the form-bounds δ and νj (j = 1, . . . , d), respectively, can be chosen

arbitrarily small, in which case these extra conditions on b are trivially satisfied.

2. In (B2) we require Jacobian Db to be symmetric, so b = ∇V for some potential V .

Let us illustrate condition (B2) with the following example.

Example 4. Let d ≥ 4. Let

b(x) = −
√
δ
d− 2

2

x

|x|2 ,

a drift that pushes solution Yt of (4.1) away from the origin. Put for brevity c :=
√
δ d−2

2 > 0.

We have div b = −c(d − 2)|x|−2 and ∇jbi = c
[

−|x|−2δij + 2xixj|x|−4
]

. Therefore, for every

ξ = (ξi) ∈ R
d,

ξ⊤(Db − div b

q
I)ξ =

d
∑

i,j=1

ξj[(∇jbi)−
1

q
(div b)δji]ξi = c

(

d− 2

q
− 1

)

|x|−2|ξ|2 + 2c|x|−4(x · ξ)2

= ξ⊤(B+ −B−)ξ,

where B+ ≥ 0 is the matrix with entries 2cxixj |x|−4, and B− := −c(d−2
q

− 1)|x|−2I ≥ 0. Thus,

constant ν in condition (B2) can be made as small as needed by selecting q > d − 2 sufficiently

close to d− 2, and so for this b condition (B2) can be satisfied for any strength of repulsion from

the origin.

In the previous example it is crucial that we can select q as close to d − 2 as needed. By

working in the parabolic setting we could obtain a stronger uniqueness result, i.e. for every fixed

initial point x. However, the parabolic setting requires us to take q > d [30], and so the previous

example becomes invalid: we have to require smallness of δ even in the case of repulsion.

Remark 10 (On some other classes of singular vector fields arising in the study of singular SDEs

and PDEs). 1. A number of important results on the regularity theory of −∆+ b ·∇ was obtained

in [54, 55] which considered supercritical form-boundedness type conditions on b (in the context of

the study of 3D Navier-Stokes equations). These are conditions of the type: there exists ε ∈]0, 1]
such that |b| ∈ L1+ε

loc ([0,∞[×R
d) and

∫ ∞

0

∫

Rd

|b(t, ·)|1+εξ2(t, ·)dt ≤ δ

∫ ∞

0

‖∇ξ(t, ·)‖22dt+
∫ ∞

0

g(t)‖ξ(t, ·)‖22dt

for all ξ ∈ C∞
c ([0,∞[×R

d) (4.8)

for some δ > 0 and 0 ≤ g ∈ L1
loc([0,∞[) under, necessarily, some assumptions on div b which cannot

be too singular. Here super-criticality/criticality/sub-criticality refer to how the assumptions on b

behave under rescaling the equation. In the super-critical case one has to sacrifice a large portion

of the regularity theory of −∆ + b · ∇ including the usual Harnack inequality and the Hölder

continuity of solutions to the elliptic and parabolic equations. See also counterexample to the

uniqueness in law for SDEs with super-critical drifts in [58]. However, some parts of the theory,
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such as the local boundedness of weak solutions, can be salvaged, see cited papers, see also recent

developments in [4, 20]. Let us also note that if we were to specify (4.8) to the critical case when

the usual regularity theory is still valid, then we would need to take ε = 1, i.e. we would obtain

condition (2.15), but not more general condition (2.14).

2. As was noted in [32], after supplementing (4.8) with condition (div b)
1
2
+ ∈ Fν for some ν < 4,

one can still prove the existence of a martingale solution to SDE (4.1). In the present paper

we work in the critical setting which allows us to preserve most of the important results in the

regularity theory of elliptic equations that do not involve estimates on the second order derivatives

of the solutions (which are destroyed by the form-boundedness assumptions), and thus allows to

prove, e.g. the strong Markov property, approximation uniqueness or conditional weak uniqueness

results for particle system (1.1) (see, however, [20] who constructed a Markov family of weak

solutions in a super-critical setting using a selection procedure).

Let us also add that above super-criticality refers to the assumptions on b, but not on (div b)+.

In fact, as the counterexample to weak solvability of (1.14) with the model attracting drift shows,

one cannot go beyond the form-boundedness assumption (critical) on (div b)+.

5. Regularity results for PDEs

1. To prove Theorem 3, we need the regularity results of Theorems 5, 6 for non-homogeneous

elliptic equations (5.1), (5.6), respectively In these results we assume additionally that the co-

efficients of (5.1), (5.6) are bounded and smooth. However, importantly, the constants in the

regularity estimates are generic, i.e. they depend only on the structure parameters of the equation

such as the dimension d, constant term λ and the form-bounds of the vector fields (but not on

the smoothness or boundedness of the coefficients).

Theorem 5 ⇒ strong Markov property in Theorem 3.

Theorem 6 ⇒ existence of martingale solutions in Theorem 3.

Theorem 5 (Hölder continuity of solutions). Let b : Rd → R
d be a bounded smooth vector field

such that either

b ∈ Fδ with δ < 4 (this is (A1))

or

{

b ∈ MF,

(div b+)
1
2 ∈ Fδ+ with δ+ < 4,

(Ā2)

where div b = div b+ − div b− for some bounded smooth functions div b± ≥ 0. Let f ∈ C∞
c , λ ≥ 0.

Then the classical solution u to non-homogeneous equation
(

λ−∆+ b · ∇
)

u = f (5.1)

is locally Hölder continuous with generic constants that also depend on ‖f‖∞.
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(The difference between (Ā2) and (A2) is that in the former case we do not require div b± to

be positive and negative parts of div b, which are continuous but not necessarily smooth.)

The fact that the constants are generic is of course the main point of Theorem 5.

Define weight

ρ(y) = (1 + k|y|2)−d
2−1, y ∈ R

d, (5.2)

where constant constant k > 0 will be chosen sufficiently small. This weight has property

|∇ρ| ≤
(

d

2
+ 1

)√
kρ. (5.3)

For a fixed x ∈ R
d, put ρx(y) := ρ(y − x).

Theorem 6 (Embedding theorem). Let b, h : Rd → R
d be bounded smooth vector fields such that

b ∈ Fδ with δ < 4, h ∈ Fχ with χ <∞ (5.4)

or

{

b ∈ MFδ for some δ <∞,

(div b+)
1
2 ∈ Fδ+ with δ+ < 4,

|h| 1+γ
2 ∈ Fχ with χ <∞ (5.5)

for some γ > 0 fixed arbitrarily small, where div b = div b+ − div b− for some bounded smooth

functions div b± ≥ 0. In the former case, fix p > 2
2−

√
δ
, p ≥ 2, and in the latter case fix p > 4

4−δ+ ,

p′ ≤ 1 + γ, p ≥ 2.

Then, for a fixed 1 < θ < d
d−2

, there exist generic constants λ0, k (in ρ), C and β ∈]0, 1[ such
that the classical solution u to non-homogeneous equation

(λ−∆+ b · ∇)u = |hf |, f ∈ C∞
c (5.6)

on R
d satisfies for all λ ≥ λ0 ∨ 1:

‖u‖∞ ≤ C sup
x∈ 1

2Z
d

(

(λ− λ0)
− 1

pθ 〈
(

1|h|>1 + |h|pθ1|h|≤1

)

|f |pθρx〉
1
pθ

+ λ−
β
p 〈
(

1|h|>1 + |h|pθ′1|h|≤1

)

|f |pθ′ρx〉
1

pθ′

)

. (5.7)

2. The following result is needed to prove conditional weak uniqueness in Theorem 4.

Theorem 7 (Gradient bounds). Assume that a bounded smooth vector field b satisfies either

condition (B1) of Theorem 4 or














b ∈ Fδ ∩ [W 1,1
loc (R

d)]d with finite δ and symmetric Jacobian Db := (∇kbi)
d
k,i=1,

and the negative part B− of matrix Db− div b
q
I for some q > (d− 2) ∨ 2

satisfies 〈B−h, h〉 ≤ ν〈|∇|h||2〉+ cν〈|h|2〉 for some ν < 4(q−1)
q2 .

(B̄2)

Then the following are true:
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(i) For every g ∈ F there exist generic constants µ0 and K such that, for every µ > µ0, the

classical solution u to elliptic equation (µ−∆− b · ∇)u = |g|f , f ∈ C∞
c , satisfies

‖∇|∇u| q2 ‖2 ≤ K‖g|f | q2 ‖2.

(ii) There exist generic constants µ0 and K such that the classical solution u to elliptic equation

(µ−∆− b · ∇)u = f , f ∈ C∞
c , satisfies, for all µ > µ0,

‖∇|∇u| q2 ‖2 ≤ K‖f‖
q
2

qd
d+q−2

.

In both assertions, by the Sobolev embedding theorem, u is Hölder continuous, although using

these gradient bounds to prove Hölder continuity would be excessive: in Theorem 5 we arrive at

the same conclusion directly, using De Giorgi’s method, under less restrictive conditions on b.

For example, condition (B̄2) holds if condition (B2) of Theorem 4 is satisfied, see Lemma 12.

Assuming that b ∈ Fδ, δ < ( 2
d−2 )

2 ∧ 1, [41] proved estimate

‖∇|∇u| q2 ‖2 ≤ K‖f‖q, q ∈](d− 2) ∨ 2,
2√
δ
[ (5.8)

for solution u to elliptic equation (µ−∆− b ·∇)u = f . This estimate was used in [41] to construct

the corresponding to −∆− b ·∇ Feller semigroup via a Moser-type iteration procedure. The norm

‖f‖q in the right-hand side of (5.8) does not allow to obtain the uniqueness result in Theorem 4

from (5.8), unless b satisfies additional assumption |b| ∈ L(d−2)∨2. Still, the argument of [41] can

be modified to include a weaker norm of f , and this is what we do in the proof of Theorem 7. In

particular, we use the test function

φ = −∇ · (∇u|∇u|q−2) (5.9)

of [41]. In more recent literature one can find other test functions that give gradient bounds on

u of the same type as in Theorem 7 (moreover, these test functions work for larger classes of

equations). However, importantly, test function (5.9) yields the least restrictive assumptions on

form-bounds δ and ν, which are in the focus of the present paper. In fact, one can argue that by

multiplying the elliptic equation by test function (5.9) and integrating by parts, one differentiates

the equation in the optimal direction ∇u
|∇u| . We refer to [27] for more detailed discussion and

references.

6. Smooth approximation of form-bounded vector fields

Let b ∈ [L1
loc(R

d)]d. Define

bε := Eεb, ε > 0,

where, recall, Eεh denotes the Friedrichs mollifier of function (or vector field) h, see Section 1.3

for the definition.

Lemma 3. If b ∈ Fδ, then the following is true:

1. bε ∈ [L∞(Rd) ∩ C∞(Rd)]d, bε → b in [L2
loc(R

d)]d as ε ↓ 0.

2. bε ∈ Fδ with the same constant cδ (thus, independent of ε).
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Proof. 1. The smoothness of bε and the convergence follow from the standard properties of

Friedrichs mollifiers, so it remains to prove that |bε| ∈ L∞. By Hölder’s inequality,

|bε(x)| ≤
√

Eε|b|2(x) =
√

〈γε(x− ·)|b(·)|2〉,
so

|bε(x)| ≤
〈

|b(·)|2γε(x− ·)
〉

1
2

(we apply the hypothesis b ∈ Fδ)

≤
(

δ
〈
∣

∣∇
√

γε(x− ·)
∣

∣

2〉
+ cδ

)
1
2 = (Cε−2 + cδ)

1
2 .

Hence |bε| ∈ L∞ for each ε > 0.

2. Put ϕε =
√

Eεϕ2, ϕ ∈ W 1,2. Then

‖bεϕ‖22 ≤ 〈Eε|b|2, ϕ2〉 = ‖bϕε‖22 ≤ δ‖∇ϕε‖22 + cδ‖ϕε‖22,
where

‖∇ϕε‖2 =
∥

∥

Eε(ϕ∇ϕ)
√

Eεϕ2

∥

∥

2

(we apply Cauchy-Schwartz’ inequality)

≤ ‖
√

Eε|∇ϕ|2‖2 = ‖Eε|∇ϕ|2‖
1
2
1 ≤ ‖∇ϕ‖2 (6.1)

and, clearly, ‖ϕε‖2 ≤ ‖ϕ‖2. �

Lemma 4. If b ∈ MFδ, then the following is true:

1. bε ∈ [L∞(Rd) ∩ C∞(Rd)]d, bε → b in [L1
loc(R

d)]d.

2. bε ∈ MFδ with the same cδ.

Proof. 1. We only need to prove |bε| ∈ L∞. By b ∈ MFδ, for all x ∈ R
d,

|bε(x)| ≤
〈

|b(·)|γε(x− ·)
〉

≤ δ
〈
∣

∣∇
√

γε(x− ·)
∣

∣

2〉 1
2 + cδ = Cε−1 + cδ.

2. Let ϕε =
√

Eεϕ2, ϕ ∈ W 1,2. We have

〈|bε|ϕ, ϕ〉 = 〈|b|Eεϕ2〉 = 〈|b|ϕ2
ε〉 ≤ δ‖∇ϕε‖2‖ϕε‖2 + cδ‖ϕε‖22,

where, repeating the previous proof, ‖∇ϕε‖2 ≤ ‖∇ϕ‖2, ‖ϕε‖2 ≤ ‖ϕ‖2. �

Assume that div b ∈ L1
loc. We can represent div bε = Eεdiv b as

div bε = div bε,+ − div bε,−,

where

div bε,+ := Eε(div b)+, div bε,− := Eε(div b)−.

Note that smooth functions div bε,± ≥ 0 are in general greater than the positive and the negative

parts (div bε)+ := div bε ∨ 0, (div bε)− := −(div bε ∧ 0) of div bε.

Lemma 5. If (div b)+ ∈ Fδ+ , (div b)− ∈ L1 + L∞, then the following is true:

1. div bε,+ ∈ L∞ ∩ C∞, div bε,+ → (div b)+ in L1
loc as ε ↓ 0.

2. div bε,+ ∈ Fδ+ with the same cδ+ as the one for b.
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Proof. The first statement follows from the properties of Friedrichs mollifiers and the following

estimate (we use notations from the previous proof): for every x ∈ R
d,

div bε,+(x) ≤
〈

(div b)+(·)γε(x− ·)
〉

≤ δ+
〈∣

∣∇
√

γε(x− ·)
∣

∣

2〉
+ cδ+ = Cε−2 + cδ,

Let us prove the second statement:

〈div bε,+ϕ, ϕ〉 = 〈(div b)+ϕ2
ε〉 ≤ δ+‖∇ϕε‖22 + cδ+‖ϕε‖22 ≤ δ+‖∇ϕ‖22 + cδ+‖ϕ‖22.

�

Finally, we will need

Lemma 6. If |h| 1+γ
2 ∈ Fχ (γ > 0), then the following is true:

1. hε := Eεh ∈ [L∞(Rd) ∩ C∞(Rd)]d, hε → h in [L1
loc(R

d)]d as ε ↓ 0,

2. |hε|
1+γ
2 ∈ Fχ with the same cχ.

Proof. By Hölder’s inequality, |hε|1+γ ≤ Eε|h|1+γ , so 〈|hε|1+γϕ2〉 ≤ 〈|h|1+γ , ϕ2
ε〉, where, recall,

ϕε =
√

Eεϕ2, ϕ ∈W 1,2. Now we apply |h| 1+γ
2 ∈ Fχ and use ‖∇ϕε‖2 ≤ ‖∇ϕ‖2, ‖ϕε‖2 ≤ ‖ϕ‖2. �

7. Proofs of Lemmas 1 and 2

Recall: b = (b1, . . . , bN ) : R
Nd → R

Nd is defined by

bi(x) :=
1

N

N
∑

j=1,j 6=i
Kij(xi − xj), x = (x1, . . . , xn) ∈ R

Nd, 1 ≤ i ≤ N.

Below | · | denotes, depending on the context, the Euclidean norm in R
Nd or Rd. In this section,

〈 , 〉 is the integration over RNd.

Proof of Lemma 1. We have

|b(x)|2 ≤
N
∑

i=1

|bi(x)|2 ≤
N
∑

i=1

(

1

N

N
∑

j=1,j 6=i
|Kij(xi − xj)|

)2

≤
N
∑

i=1

N − 1

N2

N
∑

j=1,j 6=i
|Kij(xi − xj)|2.

Therefore, 〈|b|2ϕ2〉 ≤ ∑N
i=1

N−1
N2

∑N
j=1,j 6=i〈|Kij(xi − xj)|2ϕ2〉, where, denoting by x̄ vector x with

component xi removed, we estimate

〈|Kij(xi − xj)|2ϕ2〉 =
∫

R(N−1)d

∫

Rd

|Kij(xi − xj)|2ϕ2(xi, x̄)dxidx̄

(we use Kij ∈ Fκ(R
d) in xi variable)

≤ κ

∫

R(N−1)d

∫

Rd

|∇xi
ϕ(xi, x̄)|2dxidx̄+ cκ

∫

RNd

ϕ2dx

= κ〈|∇xi
ϕ|2〉+ cκ〈ϕ2〉.

Hence 〈|b|2ϕ2〉 ≤ (N−1)2

N2 κ〈|∇ϕ|2〉+ (N−1)2

N cκ〈ϕ2〉, as claimed. �
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Proof of Lemma 2. Let us first prove (2.20). We have

〈|b|ϕ2〉 ≤
N
∑

i=1

〈|bi|ϕ2〉 ≤
N
∑

i=1

1

N

N
∑

j=1,j 6=i
〈|Kij(xi − xj)|ϕ2〉. (7.1)

Denoting by x̄ the variable x with component xi removed, we estimate

〈|Kij(xi − xj)|ϕ2〉 =
∫

R(N−1)d

∫

Rd

|Kij(xi − xj)|ϕ2(xi, x̄)dxidx̄

(apply Kij ∈ MFκ(R
d) in xi variable)

≤
∫

R(N−1)d

[(
∫

Rd

|∇xi
ϕ(xi, x̄)|2dxi

)
1
2
(
∫

Rd

ϕ2(xi, x̄)dxi

)
1
2

+ cκ

∫

Rd

ϕ2(xi, x̄)dxi

]

dx̄

≤ κ〈|∇xi
ϕ|2〉 1

2 〈ϕ2〉 1
2 + cκ〈ϕ2〉.

Therefore,

N
∑

i=1

1

N

N
∑

j=1,j 6=i
〈|Kij(xi − xj)|ϕ2〉 ≤

N
∑

i=1

N − 1

N

[

κ〈|∇xi
ϕ|2〉 1

2 〈ϕ2〉 1
2 + cκ〈ϕ2〉

]

≤ N − 1

N

√
Nκ〈|∇ϕ|2〉 1

2 〈ϕ2〉 1
2 + (N − 1)cκ〈ϕ2〉.

Applying these estimates in (7.1), we obtain (2.20).

Next, we prove (2.21). We have div b(x) =
∑N
i=1

1
N

∑N
j=1,j 6=i(divKij)(xi − xj). So,

(div b)+ =

N
∑

i=1

1

N

N
∑

j=1,j 6=i
(divKij)+(xi − xj).

Hence, by (divKij)
1
2
+ ∈ Fκ+

(Rd) (note that this condition is linear in (divKij)+),

〈(div b)+, ϕ2〉 ≤ N − 1

N
κ+〈|∇ϕ|2〉+ (N − 1)cκ+

〈ϕ2〉,

i.e. we have proved (2.21) for (div b)+.

Now, we prove (2.22). Recall that α ∈ [0, 1]. We have, using Jensen’s inequality,

|b|1+α ≤
N
∑

i=1

|bi(x)|1+α ≤
N
∑

i=1

(

1

N

N
∑

j=1,j 6=i
|Kij(xi − xj)|

)1+α

≤
N
∑

i=1

(N − 1)α

N1+α

N
∑

j=1,j 6=i
|Kij(xi − xj)|1+α.

Therefore, applying |Kij |
1+α
2 ∈ Fσ(R

d), we obtain

〈|b|1+αϕ2〉 ≤ (N − 1)1+α

N1+α
σ〈|∇ϕ|2〉+N

(N − 1)1+α

N1+α
cσ〈ϕ2〉,

which gives us (2.22). �
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Remark 11. In Remark 6 we promised to prove that vector field bM : RNd → R
Nd defined by

(3.2) is in FδM (RNd) with δM = µ, cδM = Ncµ. Here is the proof:

|bM (x)|2 =

N
∑

i=1

|Mi(xi)|2,

where (recall that 〈 , 〉 is the integration over RNd, x̄ is vector x ∈ R
Nd with component xi ∈ R

d)

〈|Mi(xi)|ϕ2〉 =
∫

R(N−1)d

∫

Rd

|Mi(xi)|ϕ2(xi, x̄)dxidx̄

(we use Mi ∈ Fµ(R
d) in xi variable)

≤ µ

∫

R(N−1)d

∫

Rd

|∇xi
ϕ(xi, x̄)|2dxidx̄+ cµ

∫

RNd

ϕ2dx = µ〈|∇xi
ϕ|2〉+ cµ〈ϕ2〉.

So,

〈|bM (x)|2ϕ2〉 =
N
∑

i=1

〈|Mi(xi)|2ϕ2〉 ≤ µ〈|∇ϕ|2〉+Ncµ〈ϕ2〉,

as claimed.

8. Proof of Theorem 5

With the exception of our proof of Proposition 1 which is, modulo its homogeneous L2 version

in [39], is new, we follow closely De Giorgi’s method as it is presented in [17, Ch. 7] with ap-

propriate modifications to account for our somewhat different definition of Lp De Giorgi’s classes

(≡ functions satisfying the inequality in Proposition 1, see discussion in Section 2.3). If we were to

take p = 2 (obviously, at the cost of imposing very sub-optimal constrains on the form-bounds),

then, once Proposition 1 is established, we could simply refer the reader to [17, Ch. 7].

If b satisfies (A1) ⇒ fix throughout this proof p > 2
2−

√
δ
, p ≥ 2.

If b satisfies (Ā2) ⇒ fix p > 2
4−δ+ , p ≥ 2.

Fix some R0 ≤ 1. Recall that u is a classical solution of equation (5.1) in R
d, i.e.

(

λ−∆+ b · ∇
)

u = f,

where f ∈ C∞
c , λ ≥ 0.

Proposition 1 (Caccioppoli’s inequality №1). Let v := (u−k)+, k ∈ R. For all 0 < r < R ≤ R0,

‖(∇v p
2 )1Br

‖22 ≤ K1

(R− r)2
‖v p

2 1BR
‖22 +K2‖|f − λu| p2 1u>k1BR

‖22

for generic constants K1, K2 (in particular, independent of k or r, R).

Proof. Let us first carry out the proof in the more difficult case when b satisfies condition (Ā2).

We will attend to the case when b satisfies (A1) in Remark 12.
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We fix a family of [0, 1]-valued smooth cut-off functions {η = ηr1,r2}0<r1<r2<R on R
d satisfying

η =

{

1 in Br1 ,

0 in R
d − B̄r2 ,

and

|∇η|2
η

≤ c

(r2 − r1)2
1Br2

, (8.1)

√

|∇η| ≤ c√
r2 − r1

1Br2
, (8.2)

|∇
√

|∇η|| ≤ c

(r2 − r1)
3
2

1Br2
(8.3)

for some constant c. For instance, one can take, for r1 ≤ |y| ≤ r2,

η(y) := 1−
∫ 1+

|y|−r1
r2−r1

1

ϕ(s)ds, where ϕ(s) := Ce
− 1

1
4
−(s− 3

2
)2 , sprtϕ = [1, 2],

with constant C adjusted to
∫ 2

1
ϕ(s)ds = 1.

We put equation (5.1) in the form

(−∆+ b · ∇)(u− k) = f − λu

(keeping in mind that even if λ > 0 solution u of (5.1) satisfies a priori estimate ‖u‖∞ ≤ λ−1‖f‖∞,

so the ‖ · ‖∞ norm of the right-hand side of the previous identity is bounded by 2‖f‖∞), multiply

it by vp−1η and integrate, obtaining

4(p− 1)

p2
〈∇v p

2 , (∇v p
2 )η〉+ 2

p
〈∇v p

2 , v
p
2∇η〉

+
2

p
〈b · ∇v p

2 , v
p
2 η〉 ≤ 〈|f − λu|, vp−1η〉.

Then, applying quadratic inequality (fix some ǫ > 0), we have
(

4(p− 1)

p
− 4

p
ǫ

)

〈|∇v p
2 |2η〉 ≤ p

4ǫ

〈

vp
|∇η|2
η

〉

− 2〈b · ∇v p
2 , v

p
2 η〉+ p〈|f − λu|, vp−1η〉 (8.4)

(we are integrating by parts in the second term)

≤ p

4ǫ

〈

vp
|∇η|2
η

〉

+ 〈bv p
2 , v

p
2∇η〉+ 〈div b, vpη〉+ p〈|f − λu|, vp−1η〉

=: I1 + I2 + I3 + I4.

By (8.1),

I1 ≤ cp

4ǫ(r2 − r1)2
‖v p

2 1Br2
‖22.
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By (Ā2),

I2 ≤ 〈|b|v p
2 , v

p
2 |∇η|〉

≤ δ‖∇(v
p
2

√

|∇η|)‖2‖v
p
2

√

|∇η|‖2 + cδ‖v
p
2

√

|∇η|‖22

≤ δ

(

‖(∇v p
2 )
√

|∇η|‖2 + ‖v p
2∇

√

|∇η|‖2
)

‖v p
2

√

|∇η|‖2 + cδ‖v
p
2

√

|∇η|‖22.

Hence, using (8.2), (8.3), we obtain

I2 ≤ δc

(

1√
r2 − r1

‖(∇v p
2 )1Br2

‖2 +
1

(r2 − r1)
3
2

‖v p
2 1Br2

‖2
)

1√
r2 − r1

‖v p
2 1Br2

‖2

+
cδc

r2 − r1
‖v p

2 1Br2
‖22.

Thus, since r2 − r1 < 1,

I2 ≤ C1

r2 − r1
‖(∇v p

2 )1Br2
‖2‖v

p
2 1Br2

‖2 + C1

(

1 +
1

(r2 − r1)2

)

‖v p
2 1Br2

‖22

for appropriate constant C1.

Next, by (Ā2),

I3 ≤ 〈div b+, vpη〉 ≤ δ+‖∇(v
p
2
√
η)‖22 + cδ+‖v

p
2
√
η‖22

= δ+‖(∇v
p
2 )
√
η + v

p
2
∇η√
η
‖22 + cδ+‖v

p
2
√
η‖22

≤ δ+

(

(1 + ǫ1)‖(∇v
p
2 )
√
η‖22 +

(

1 +
1

ǫ1

)

‖v p
2
∇η√
η
‖22
)

+ cδ+‖v
p
2
√
η‖22 (ǫ1 > 0)

≤ δ+(1 + ǫ1)‖(∇v
p
2 )
√
η‖22 +

c1
(r2 − r1)2

‖v p
2 1Br2

‖22, c1 := δ+

(

1 +
1

ǫ1

)

c + cδ+.

Finally, we estimate using Young’s inequality (p′ = p
p−1 ):

1

p
I4 ≤ εp

′

2

p′
〈vpη〉+ 1

pεp2
〈|f − λu|p1v>0η〉 (ε2 > 0).

Applying the estimates on I1-I4 in (8.4), we obtain

‖|∇v p
2 |1Br1

‖22 ≤ C1

r2 − r1
‖(∇v p

2 )1Br2
‖2‖v

p
2 1BR

‖2

+ C2

(

1 +
1

(r2 − r1)2

)

‖v p
2 1BR

‖22 + C3‖|f − λu| p2 1v>01BR
‖22. (8.5)

Divide (8.5) by ‖v p
2 1BR

‖22:
‖(∇v p

2 )1Br1
‖22

‖v p
2 1BR

‖22
≤ C1

r2 − r1

‖(∇v p
2 )1Br2

‖2
‖v p

2 1BR
‖2

+ C2

(

1 +
1

(r2 − r1)2

)

+ C3S
2, (8.6)

where

S2 :=
‖|f − λu| p2 1v>01BR

‖22
‖v p

2 1v>01BR
‖22

.

Inequality (8.6) is the pre-Caccioppoli inequality that we will now iterate.
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Put

a2n :=

‖(∇v p
2 )1B

R− R−r

2n−1

‖22
‖v p

2 1v>01BR
‖22

,

the inequality (8.6) yields

a2n ≤ C(R − r)−12nan+1 + C2(R − r)−222n + C2S2

with constant C independent of n. We multiply this inequality by (R− r)2 and divide by C222n.

Then, setting yn := (R−r)an
C2n , we obtain

y2n ≤ yn+1 + 1 + (R− r)2S2 (8.7)

for all n = 1, 2, . . . A priori, all an’s are bounded by a non-generic constant ‖(∇v p
2 )1BR

‖2/‖v
p
2 1BR

‖2 <
∞, so supn yn < ∞. Therefore, we can iterate (8.7) and thus estimate all yn, n = 1, 2, . . . , via

nested square roots 1 + (R − r)2S2 +
√

1 + (R − r)2S2 +
√
. . ., obtaining

y2n ≤ 3 + 2(R− r)2S2, n = 1, 2, . . .

Taking n = 1, we arrive at a1 ≤ K1(R− r)−2 +K2S
2 for appropriate constants K1 and K2, i.e.

‖(∇v p
2 )1Br

‖22
‖v p

2 1BR
‖22

≤ K1(R − r)−2 +K2
‖|f | p2 1v>01BR

‖22
‖v p

2 1BR
‖22

,

as claimed.

Remark 12. If b satisfies condition (A1), then we can work with somewhat simpler cutoff func-

tions η ∈ C∞
c , η = 1 in Br1 , η = 0 in R

d \Br2 , i.e. |∇η| ≤ c1(r2− r1)
−1, |∆η| ≤ c2(r2− r1)

−2, and

we do not need to integrate by parts in order to estimate the second term in the RHS of (8.4).

Instead, we only need to apply quadratic inequality:

2|〈b · ∇v p
2 , v

p
2 η〉| ≤ α〈|∇v| p2 η〉+ 1

4α
〈|b|2, vpη〉, α =

2√
δ
.

The proof of Proposition 1 is completed. �

Lemma 7 ([17, Lemma 7.1]). If {zi}∞i=0 ⊂ R+ is a sequence of positive real numbers such that

zi+1 ≤ NCi0z
1+α
i

for some C0 > 1, α > 0, and

z0 ≤ N− 1
αC

− 1
α2

0 .

Then limi zi = 0.

Lemma 8 ([17, Lemma 7.3]). Let ϕ(t) be a positive function, and assume that there exists a

constant q and a number 0 < τ < 1 such that for every 0 < R < R0

ϕ(τR) ≤ τ δϕ(R) + BRβ

with 0 < β < δ, and

ϕ(t) ≤ qϕ(τkR)
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for every t in the interval (τk+1R, τkR). Then, for every 0 < ρ < R < R0, we have

ϕ(ρ) ≤ C

((

ρ

R

)β

ϕ(R) +Bρβ
)

with constant C that depends only on q, τ , δ and β.

Proposition 2. For all 0 < r < R ≤ R0,

sup
BR

2

u ≤ C1

(

1

|BR|
〈up1BR∩{u>0}〉

)
1
p
( |BR ∩ {u > 0}|

|BR|

)
α
p

+ C2R
2
p

for generic constants C1, C2 that also depend on ‖f − λu‖∞ (≤ 2‖f‖∞), where α > 0 is fixed by

α(α+ 1) = 2
d .

Proof. Without loss of generality, R0 = 1. Let 1
2 < r < ρ ≤ 1. Fix η ∈ C∞

c , η = 1 on Br, η = 0 on

R
d \ B̄ r+ρ

2
, |∇η| ≤ 4

ρ−r . Set ζ := ηv = η(u− k)+, k ∈ R. Using Hölder’s inequality and Sobolev’s

embedding theorem, we obtain

‖v p
2 1Br

‖22 ≤ ‖ζ p
2 1Br

‖22 ≤ 〈1Br∩{u>k}〉
2
d 〈ζ pd

d−21B r+ρ
2

〉 d−2
d

≤ c1|Br ∩ {u > k}| 2d 〈|∇ζ p
2 |21B r+ρ

2

〉

= c1|Br ∩ {u > k}| 2d 〈|(∇η p
2 )v

p
2 + η

p
2∇v p

2 |21B r+ρ
2

〉

Hence

‖v p
2 1Br

‖22 ≤ c2|Br ∩ {u > k}| 2d
(

1

(ρ− r)2
‖v p

2 1B r+ρ
2

‖22 + ‖(∇v p
2 )1B r+ρ

2

‖22
)

.

On the other hand, Proposition 1 yields:

‖(∇v p
2 )1B r+ρ

2

‖22 ≤ K1

(ρ− r)2
‖v p

2 1Bρ
‖22 +K2‖f − λu‖p∞

∣

∣Bρ ∩ {u > k}
∣

∣, (8.8)

so

‖v p
2 1Br

‖22 ≤ C|Br ∩ {u > k}| 2d
(

1

(ρ− r)2
‖v p

2 1Bρ
‖22 + ‖f − λu‖p∞

∣

∣Bρ ∩ {u > k}
∣

∣

)

≤ C|Bρ ∩ {u > k}| 2d
(ρ− r)2

‖v p
2 1Bρ

‖22 + C‖f − λu‖p∞|Bρ ∩ {u > k}|1+ 2
d . (8.9)

Now, returning from notation v to (u− k)+, we note that if h < k, then ‖(u− k)
p
2 1Bρ∩{u>k}‖2 ≤

‖(u−h)
p
2 1Bρ∩{u>h}‖2 and ‖(u−h)

p
2 1Bρ∩{u>h}‖22 ≥ (k−h)p|Bρ ∩{u > k}|. Therefore, we obtain

from (8.9)

‖(u− k)
p
2
+1Br

‖22 ≤ C

(ρ− r)2
‖(u− h)

p
2
+1Bρ

‖22|Bρ ∩ {u > h}| 2d

+
C‖f − λu‖p∞

(k − h)p
‖(u− h)

p
2
+1Bρ

‖22|Bρ ∩ {u > h}| 2d .



PARTICLE SYSTEMS WITH SINGULAR INTERACTIONS 43

Multiplying this inequality by |Br∩{u > k}|α
(

≤ 1
(k−h)pα ‖(u−h)

p
2
+1Bρ

‖2α2
)

and using α2+α = 2
d ,

we obtain

‖(u− k)
p
2
+1Br

‖22|Br ∩ {u > k}|α

≤ C

[

1

(ρ− r)2
+

‖f − λu‖p∞
(k − h)p

]

1

(k − h)pα
(

‖(u− h)
p
2
+1Bρ

‖22|Bρ ∩ {u > h}|α
)1+α

.

Now, take r := ri+1, ρ := ri, where ri :=
R
2
(1+ 1

2i ) and k := ki+1, h := ki, where ki := ξ(1− 2−i),

with constant ξ ≥ R
2
p to be chosen later. Then, setting

zi = z(ki, ri) := ‖(u− ki)
p
2
+1Bri

‖22|Bri ∩ {u > ki}|α,

we have

zi+1 ≤ K

[

22i +
2piR2

ξp

]

1

R2

2piα

ξpα
z1+αi

hence (using ξ ≥ R
2
p )

zi+1 ≤ 2p(1+α)i
2K

R2

1

ξpα
z1+αi .

We apply Lemma 7. In the notation of this lemma, C0 = 2p(1+α) and N = 2K
R2

1
ξpα . We need

z0 ≤ N− 1
αC

− 1
α2

0

where, recall, z0 = 〈up1BR∩{u>0}〉|BR ∩ {u > 0}|α. The latter amounts to requiring

ξ ≥ C1R
− 2

pα z
1
p

0 .

Take ξ := R
2
p + C1R

− 2
pα z

1
p

0 . By Lemma 7, z(ξ, R2 ) = 0, i.e. supR
2
u ≤ ξ. The claimed inequality

follows. �

Set

osc (u,R) := sup
y,y′∈BR

|u(y)− u(y′)|.

Proposition 3. Fix k0 by

2k0 =M (2R) +m(2R) := sup
B2R

u+ inf
B2R

u.

Assume that |BR ∩ {u > k0}| ≤ γ|BR| for some γ < 1. If

osc (u, 2R) ≥ 2n+1CR
2
p , (8.10)

then, for kn :=M (2R)− 2−n−1osc (u, 2R),

|BR ∩ {u > kn}| ≤ cn−
d

2(d−1) |BR|.
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Proof. 1. For h ∈]k0, k[, set w := (u− h)
p
2 if h < u < k, set w := (k − h)

p
2 if u ≥ k, and w := 0 if

u ≤ h. Note that w = 0 in BR \ (BR ∩ {u > k0}). The measure of this set is greater than γ|BR|,
so the Sobolev embedding theorem applies and yields

(k − h)
p
2 |BR ∩ {u > k}| d−1

d ≤ c1〈w
d

d−11BR
〉 d−1

d ≤ c2〈|∇w|1∆〉
≤ c2|∆| 12 〈|∇(u− h)

p
2 |21BR∩{u>h}〉

1
2 ,

where

∆ := BR ∩ {u > h} \ (BR ∩ {u > k}).

Now, it follows from Proposition 1 that

〈|∇(u− h)
p
2 |21BR∩{u>h}〉 ≤

C3

R2
〈(u− h)p1B2R∩{u>h}〉+ C4|B2R ∩ {u > h}|

≤ C3R
d−2(M (2R)− h)p + C5R

d.

For h ≤ kn we have M (2R)− h ≥ M (2R)− kn ≥ CR
2
p , where we have used (8.10). Therefore,

summarizing what was written above, we have

(k − h)
p
2 |BR ∩ {u > k}| d−1

d ≤ c|∆| 12R d−2
2 (M (2R)− h)

p
2 .

2. Select k = ki :=M (2R)− 2−i−1osc (u, 2R), h = ki−1. Then

M (2R)− h = 2−iosc (u, 2R), |k − h| = 2−i−1osc (u, 2R),

so

|BR ∩ {u > kn}|
2(d−1)

d ≤ |BR ∩ {u > ki}|
2(d−1)

d ≤ C|∆i|Rd−2,

where ∆i := BR ∩ {u > ki} \ (BR ∩ {u > ki−1}). Summing up in i from 1 to n, we obtain

n|BR ∩ {u > kn}|
2(d−1)

d ≤ CRd−2|BR ∩ {u > k0}| ≤ C′R2(d−1),

and the claimed inequality follows. �

Proof of Theorem 5, completed. Fix k0 by 2k0 = M (2R) + m(2R). Without loss of generality,

|BR ∩{u > k0}| ≤ 1
2 |BR| (otherwise we replace u by −u). Set kn :=M (2R)− 2−n−1osc (u, 2R) >

k0. By Proposition 2,

sup
BR

2

(u− kn) ≤ C1

( 1

|BR|
〈(u− kn)

p1BR∩{u>kn}〉
)

1
p

( |BR ∩ {u > kn}|
|BR|

)
α
p

+ C2R
2
p

≤ C1 sup
BR

(u− kn)

( |BR ∩ {u > kn}|
|BR|

)

1+α
p

+ C2R
2
p

We now apply Proposition 3 (with, say, C = 1). Fix n by

cn−
d

2(d−1) ≤
(

1

2C1

)

p
1+α

.
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Then, if osc (u, 2R) ≥ 2n+1R
2
p , we obtain from Proposition 3

M

(

R

2

)

− kn ≤ 1

2
(M (2R)− kn) + C2R

2
p ,

so,

M

(

R

2

)

≤M (2R)− 1

2n+1
osc (u, 2R) +

1

2

1

2n+1
osc (u, 2R) + C2R

2
p ,

M

(

R

2

)

−m

(

R

2

)

≤M (2R)−m(2R)− 1

2

1

2n+1
osc (u, 2R) + C2R

2
p .

Hence, since osc (u, 2R) =M (2R)−m(2R),

osc

(

u,
R

2

)

≤
(

1− 1

2n+2

)

osc (u, 2R) + C2R
2
p . (8.11)

If osc (u, 2R) ≤ 2n+1R
2
p , then, clearly,

osc

(

u,
R

2

)

≤
(

1− 1

2n+2

)

osc (u, 2R) +
1

2
R

2
p . (8.12)

This yields the sought Hölder continuity of u via Lemma 8 with τ = 1
4 , δ = logτ (1− 2−n−2) and

0 < β < 2
p
∧ δ. (Note that the second inequality in the conditions of Lemma 8 holds if q = 1 and

ϕ is non-decreasing, which is our case.) �

9. Proof of Theorem 6

If b satisfies (5.4), then we fix throughout the proof p > 2
2−

√
δ
, p ≥ 2. If b satisfies (5.5), then

we fix p > 2
4−δ+ , p ≥ 2, p′ ≤ 1 + γ, where, recall p′ := p

p−1 .

We are going to modify some parts of the proof of Theorem 5. But there are some important

differences:

(1) To prove Theorem 6, we need to obtain an L∞ bound on solution u of nonhomogeneous

equation (5.6), i.e. estimate (5.7). At the first sight, establishing an L∞ bound seems

to be easier than what we did in Theorem 5, i.e. proved Hölder continuity of solution.

However, equation (5.6) is more sophisticated than the elliptic equation in Theorem 5:

its right-hand side contains a posteriori unbounded function |h|. (To add more details: in

the proof of Theorem 3 we will need to take vector field h = bn and h = bn − bm, but,

crucially, the sought L∞ bound on solution u should not depend on n or m. In other

words, L∞ bound on solution u should not depend on the boundedness or smoothness of

b and h.)

(2) Since there is now a posteriori unbounded factor |h| in the right-hand side of (5.6), we

will need a different Caccioppoli’s inequality, i.e. the one in Proposition 4.

(3) Although the sought L∞ bound on solution u of (5.6) is a global bound on R
d, we will

still have to argue locally, i.e. work with cutoff functions. There are important reasons for

this, see explanation Section 1.1.
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Proposition 4 (Caccioppoli’s inequality №2). Fix R0 ≤ 1. For all 0 < r < R ≤ R0 and every

k ≥ 0, the positive part v := (u− k)+ of u− k satisfies

λ‖v p
2 1Br

‖22 + ‖(∇v p
2 )1Br

‖22 ≤
K1

(R − r)2
‖v p

2 1BR
‖22

+K2‖
(

1|h|>1 + |h| p2 1|h|≤1

)

|f | p2 1u>k1BR
‖22

for generic constants K1, K2 (so, independent of r, R and k).

Remark 13. Comparing the Caccioppoli inequality of Proposition 4 with the one in Proposition

1, one notices that we kept bounded function 1|h|>1 + |h| p2 1|h|≤1 in the right-hand side. We will

use this function as follows. In the proof of Theorem 3 we will consider, in particular, h = bn−bm.
We will need to show that the corresponding solution u goes to zero locally uniformly on R

d as

n,m→ ∞, which will be possible to do using (5.7) precisely because we kept 1|h|>1 + |h| p2 1|h|≤1.

Proof. We extend the proof of Proposition 1 to the setting of Proposition 4. Once again, first

we carry out the proof in the more difficult case when b and h satisfy condition (5.5), and then

attend to the case when b and h satisfy (5.4) in Remark 14.

Let {η = ηr1,r2}0<r1<r2<R be a family of [0, 1]-valued smooth cut-off functions satisfying (8.1)-

(8.3).

From equation (5.6) we obtain, since both λ and k are non-negative,

(λ−∆+ b · ∇)(u− k) ≤ |hf |.

After multiplying by vp−1η ≥ 0 and integrating, we obtain

λ〈vpη〉+ 4(p− 1)

p2
〈∇v p

2 , (∇v p
2 )η〉+ 2

p
〈∇v p

2 , v
p
2∇η〉

+
2

p
〈b · ∇v p

2 , v
p
2 η〉 ≤ 〈|hf |, vp−1η〉.

Then, applying quadratic inequality (fix some ǫ > 0), we have

pλ〈vpη〉+
(

4(p− 1)

p
− 4

p
ǫ

)

〈|∇v p
2 |2η〉 ≤ p

4ǫ

〈

vp
|∇η|2
η

〉

− 2〈b · ∇v p
2 , v

p
2 η〉+ p〈|hf |, vp−1η〉 (9.1)

(we are integrating by parts)

≤ p

4ǫ

〈

vp
|∇η|2
η

〉

+ 〈bv p
2 , v

p
2∇η〉+ 〈div b, vpη〉+ p〈|hf |, vp−1η〉 =: I1 + I2 + I3 + I4.
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Terms I1-I3 are estimated in the same way as in the proof of Proposition 1. Term I4 is different,

so we argue as follows:

1

p
I4 ≤ 〈(|h|1|h|>1 + |h|1|h|≤1)|f |, vp−1η〉

(we open the brackets and apply Young’s inequality)

≤ εp
′

2

p′
〈|h|p′1|h|>1v

pη〉+ 1

pεp2
〈1|h|>1|f |pη〉 (ε2 > 0)

+
εp

′

2

p′
〈vpη〉+ 1

pεp2
〈|h|p1|h|≤1|f |pη〉

(

using 1 + γ ≥ p′, we apply |h| 1+γ
2 ∈ Fχ in the first term,

i.e. 〈|h|p′1|h|>1v
pη〉 ≤ 〈(|h| 1+γ

2 )2(v
p
2
√
η)2〉 ≤ χ

〈∣

∣(∇v p
2 )2

√
η + v

p
2
1

2

∇η√
η

∣

∣

2〉
+ cχ〈vpη〉, so:

)

≤ 2
εp

′

2

p′
χ〈|∇v p

2 |2η〉+ 1

2

εp
′

2

p′
χ〈vp |∇η|

2

η
〉+ εp

′

2

p′
(cχ + 1)〈vpη〉+ 1

pεp2

〈

Θ|f |p1v>0η
〉

,

where Θ := 1|h|>1 + |h|p1|h|≤1. Selecting ε2 sufficiently small and applying the estimates on I1-I4
in (9.1), we obtain

λ‖v p
2 1Br1

‖22 + ‖|∇v p
2 |1Br1

‖22 ≤ C1

r2 − r1
‖(∇v p

2 )1Br2
‖2‖v

p
2 1BR

‖2

+ C2

(

1 +
1

(r2 − r1)2

)

‖v p
2 1BR

‖22 + C3‖Θ
1
2 |f | p2 1v>01BR

‖22,

so, dividing by ‖v p
2 1BR

‖22, we arrive at

λ‖v p
2 1Br1

‖22 + ‖(∇v p
2 )1Br1

‖22
‖v p

2 1BR
‖22

≤ C1

r2 − r1

λ‖v p
2 1Br2

‖22 + ‖(∇v p
2 )1Br2

‖2
‖v p

2 1BR
‖2

+ C2

(

1 +
1

(r2 − r1)2

)

+ C3S
2, (9.2)

where S2 :=
‖Θ

1
2 |f |

p
2 1v>01BR

‖2
2

‖v
p
2 1v>01BR

‖2
2

. This is the pre-Caccioppoli inequality that we will iterate. Put

a2n :=

λ‖v p
2 1B

R− R−r

2n−1

‖22 + ‖(∇v p
2 )1B

R− R−r

2n−1

‖22
‖v p

2 1v>01BR
‖22

,

so the inequality (9.2) yields

a2n ≤ C(R − r)−12nan+1 + C2(R − r)−222n + C2S2

with constant C independent of n. We multiply this inequality by (R− r)2 and divide by C222n.

Setting yn := (R−r)an
C2n , we obtain

y2n ≤ yn+1 + 1 + (R− r)2S2 (9.3)

for all n = 1, 2, . . . We note that all an’s are bounded by a non-generic constant (λ‖v p
2 1B‖22 +

‖(∇v p
2 )1BR

‖2)/‖v
p
2 1BR

‖2 < ∞, so supn yn < ∞. Therefore, we can iterate (9.3) and hence
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estimate all yn, n = 1, 2, . . . , via nested square roots 1 + (R − r)2S2 +
√

1 + (R− r)2S2 +
√
. . .,

obtaining

y2n ≤ 3 + 2(R− r)2S2, n = 1, 2, . . .

Taking n = 1, we arrive at a1 ≤ K1(R− r)−2 +K2S
2 for appropriate constants K1 and K2, i.e.

λ‖v p
2 1Br

‖22 + ‖(∇v p
2 )1Br

‖22
‖v p

2 1BR
‖22

≤ K1(R− r)−2 +K2
‖Θ 1

2 |f | p2 1v>01BR
‖22

‖v p
2 1BR

‖22
,

as claimed.

Remark 14. If b and h satisfy condition (5.4), then, again, we can work with cutoff functions

η ∈ C∞
c , η = 1 in Br1 , η = 0 in R

d \Br2 , i.e. |∇η| ≤ c1(r2 − r1)
−1, |∆η| ≤ c2(r2 − r1)

−2, and we

estimate the second term in the RHS of (9.1) right away using quadratic inequality:

2|〈b · ∇v p
2 , v

p
2 η〉| ≤ α〈|∇v| p2 η〉+ 1

4α
〈|b|2, vpη〉, α =

2√
δ
.

Regarding the terms containing h, we simply take γ = 1, which transforms condition |h| 1+γ
2 ∈ Fχ,

χ <∞ from (5.5) into condition h ∈ Fχ in (5.4), and argue as in the estimate on I4 above.

This ends the proof of Proposition 4. �

Recall that we have fixed 1 < θ < d
d−2 in the statement of the theorem.

Proposition 5. There exists generic constants K and β ∈]0, 1[ such that, for all λ ≥ 1, the

positive part u+ of solution u of non-homogeneous equation (5.6) satisfies

sup
B 1

2

u+ ≤ K

(

〈upθ+ 1B1
〉 1

pθ + λ−
β
p
〈

(1|h|>1 + |h|p1|h|≤1)
θ′ |f |pθ′1B1

〉
1

pθ′

)

. (9.4)

Remark 15. In the proof of Proposition 5 we iterate simultaneously over (a) balls of decreasing

radius (b) super-level sets of solution u. To get an overview of the proof, one can first formally

take r = R = ∞ to see that the iterations over super-level sets indeed work as intended.

Proof. Proposition 4 yields

λ‖v p
2 1Br

‖22 + ‖v p
2 ‖2W 1,2(Br)

≤ K̃1(R− r)−2‖v‖pLp(BR)

+K2‖Θ
1
p f1u>k‖pLp(BR), v := (u− k)+, k ≥ 0,

where Θ := 1|h|>1 + |h|p1|h|≤1 and K̃1, K2 are generic constants. By the Sobolev embedding

theorem,

λ‖v‖pLp(Br)
+ ‖v‖p

L
pd

d−2 (Br)
≤ C1(R − r)−2‖v‖pLp(BR) + C2‖Θ

1
p f1u>k‖pLp(BR).

Next, we estimate the left-hand side from below using interpolation inequality:

λβ‖v‖pLq(Br)
≤ βλ‖v‖pLp(Br)

+ (1− β)‖v‖p
L

pd
d−2 (Br)

, 0 < β < 1,
1

q
= β

1

p
+ (1− β)

d− 2

pd
.
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Remark 16. 1. To prove the previous inequality, we put for brevity r = pd
d−2 , µ = λ

qβ
p and write

µ|v|q = (µ
1
βq v)p

βq
p |v|r (1−β)q

r , so, denoting here the integration over Br by 〈·〉, we have

〈µ|v|q〉 ≤ 〈(µ 1
βq v)p〉

qβ
p 〈|v|r〉

(1−β)q
r .

Hence

µ
p
q ‖v‖pq ≤ 〈(µ 1

βq v)p〉β〈|v|r〉(1−β) p
r ,

and it remains to apply in the right-hand side Young’s inequality ab ≤ βa
1
β + (1− β)b

1
1−β .

2. We could take β = 0, in which case

q =
pd

d− 2
, θ0 =

d

d− 2
,

but then we lose the dependence on λ in the second term in the right-hand side of (9.4). Strictly

speaking, we do not need to keep track of the dependence on λ in this work, but this is needed

for some other applications of Theorem 6, e.g. to construct strongly continuous Feller semigroup

in [37]. To get an overview of this proof it is worthwhile to first ignore λ and to take β = 0 and

θ0 = d
d−2 .

Put θ0 := q
p , so 1 < θ0 <

d
d−2 . We fix β ∈]0, 1[ sufficiently small so that θ < θ0.

Hence, taking into account that q = pθ0,

λβ‖v‖p
Lpθ0(Br)

≤ C̃1(R− r)−2‖v‖pLp(BR) + C̃2‖Θ
1
p f1u>k‖pLp(BR).

Applying Hölder’s inequality in the RHS, we obtain

λβ‖v‖p
Lpθ0(Br)

≤ C̃1(R− r)−2|BR|
θ−1
θ ‖v‖p

Lpθ(BR)
+ C̃2‖Θ

1
p f1u>k‖pLp(BR). (9.5)

Set

Rm :=
1

2
+

1

2m+1
, m ≥ 0,

so Bm ≡ BRm
is a decreasing sequence of balls converging to the ball of radius 1

2 . By (9.5),

λβ‖v‖p
Lpθ0(Bm+1)

≤ Ĉ12
2m‖v‖p

Lpθ(Bm)
+ C̃2‖Θ

1
p f1u>k‖pLp(Bm)

≤ Ĉ12
2m‖v‖p

Lpθ(Bm)
+ C̃2H|Bm ∩ {v > 0}| 1θ , (9.6)

where

H := 〈Θθ′ |f |pθ′1B0〉 1
θ′ (B0 = B1, i.e. ball of radius 1)

On the other hand, by Hölder’s inequality,

‖v‖pθ
Lpθ(Bm+1)

≤ ‖v‖pθ
Lpθ0(Bm+1)

(

|Bm ∩ {v > 0}|
)1− θ

θ0

.
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Applying (9.6) in the first multiple in the RHS, we obtain

‖v‖pθ
Lpθ(Bm+1)

≤ C̃λ−βθ
(

22θm‖v‖pθ
Lpθ(Bm)

+Hθ|Bm ∩ {v > 0}|
)(

|Bm ∩ {v > 0}|
)1− θ

θ0

.

Now, put vm := (u − km)+ where km := ξ(1 − 2−m) ↑ ξ, where constant ξ > 0 will be chosen

later. Then, using 22θm ≤ 2pθm and dividing by ξpθ,

1

ξpθ
‖vm+1‖pθLpθ(Bm+1)

≤ C̃λ−βθ
(

2pθm

ξpθ
‖vm+1‖pθLpθ(Bm)

+
1

ξpθ
Hθ|Bm ∩ {u > km+1}|

)(

|Bm ∩ {u > km+1}|
)1− θ

θ0

.

Using that λ ≥ 1, we further obtain

1

ξpθ
‖vm+1‖pθLpθ(Bm+1)

≤ C̃

(

2pθm

ξpθ
‖vm+1‖pθLpθ(Bm)

+
1

ξpθ
λ−βθHθ|Bm ∩ {u > km+1}|

)(

|Bm ∩ {u > km+1}|
)1− θ

θ0

.

From now on, we require that constant ξ satisfies ξp ≥ λ−βH, so

1

ξpθ
‖vm+1‖pθLpθ(Bm+1)

(9.7)

≤ C̃

(

2pθm

ξpθ
‖vm+1‖pθLpθ(Bm)

+ |Bm ∩ {u > km+1}|
)(

|Bm ∩ {u > km+1}|
)1− θ

θ0

.

Now,

|Bm ∩ {u > km+1}| =
∣

∣Bm ∩
{

(
u− km

km+1 − km
)2θ > 1

}∣

∣

≤ (km+1 − km)−pθ〈vpθm 1Bm〉 = ξ−pθ2pθ(m+1)‖vm‖pθLpθ(Bm)
,

so using in (9.7) ‖vm+1‖Lpθ(Bm) ≤ ‖vm‖Lpθ(Bm) and applying the previous inequality, we obtain

1

ξpθ
‖vm+1‖pθLpθ(Bm+1)

≤ C̃2
pθm(2− θ

θ0
)

(

1

ξpθ
‖vm‖pθLpθ(Bm)

)2− θ
θ0

.

Denote zm := 1
ξpθ

‖vm‖pθLpθ(Bm)
. Then

zm+1 ≤ C̃γmz1+αm , m = 0, 1, 2, . . . , α := 1− θ

θ0
, γ := 2pθ(2−

θ
θ0

)

and z0 =
1
ξpθ

〈upθ+ 1B0〉 ≤ C̃− 1
α γ−

1
α2 (recall: B0 := BR0

≡ B1) provided that we fix c by

ξpθ := C̃
1
α γ

1
α2 〈upθ+ 1B0〉+ λ−βθHθ.

Hence, by Lemma 7, zm → 0 as m → ∞. It follows that supB1/2
u+ ≤ ξ, and the claimed

inequality follows. �

To end the proof of Theorem 6, we need to estimate 〈upθ+ 1B1
〉1/pθ in the RHS of (9.4) in terms

of h and f . We will do it by estimating 〈upθ+ ρ〉1/pθ, where, recall,

ρ(x) = (1 + k|x|2)−d
2−1,
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and then applying inequality ρ ≥ c1B1
for appropriate constant c = cd.

Proposition 6. There exist generic constants C, k and λ0 > 0 such that for all λ ≥ λ0,

(λ− λ0)〈upρ〉+ 〈|∇u p
2 |2ρ〉 ≤ C

〈(

1|h|>1 + |h|p1|h|≤1

)

|f |pρ
〉

. (9.8)

Proof. Let b satisfy condition (5.5). We may assume without loss of generality that p > 2
2−δ+ is

rational with odd denominator. We multiply equation (5.6) by up−1ρ and integrate to obtain

λ〈upρ〉+ 4(p− 1)

p2
〈∇u p

2 , (∇u p
2 )ρ〉+ 2

p
〈∇u p

2 , u
p
2 ∇ρ〉+ 2

p
〈b · ∇u p

2 , u
p
2 ρ〉 = 〈|h|f, up−1ρ〉.

Now we argue as in the proof of Proposition 4, but instead of the iterations we use a straightforward

estimate |∇ρ| ≤ (d2 + 1)
√
kρ in order to get rid of ∇ρ in the previous identity. We arrive at

pλ〈upρ〉+
(

4(p− 1)

p
− 4

p
ε

)

〈|∇u p
2 |2ρ〉

≤ p

4ε
(
d

2
+ 1)2k〈vpρ〉+ (

d

2
+ 1)

√
k〈|b|upρ〉+ 〈div b+, upρ〉 (ε, ε′ > 0)

+ p

(

2ε′χ〈|∇u p
2 |2ρ〉+ 2ε′χ(

d

2
+ 1)2k〈upρ〉

+ ε′(cχ + 1)〈upρ〉+ 1

4ε′
〈
(

1|h|>1 + |h|p1|h|≤1

)

|f |pρ〉
)

.

The terms 〈|b|upρ〉, 〈(div b)+, upρ〉 are estimated by applying quadratic inequality and using con-

dition (5.5). Selecting ε, ε′, k sufficiently small, we arrive at the sought inequality.

If b satisfies (5.4), then the proof is similar but easier (i.e. we do not need to integrate by parts,

only to apply quadratic inequality to 〈b · ∇u p
2 , u

p
2 ρ〉 and use form-boundedness of b). �

Proof of Theorem 6, completed. By Proposition 5, for all λ ≥ 1,

sup
y∈B 1

2
(x)

|u(y)| ≤ K

(

〈|u|pθρx〉
1
pθ + λ−

β
p
〈(

1|h|>1 + |h|pθ′1|h|≤1

)

|f |pθ′ρx
〉

1
pθ′

)

,

where ρx(y) := ρ(y − x), and constant C is generic, so

‖u‖∞ ≤ K sup
x∈ 1

2Z
d

(

〈|u|pθρx〉
1
pθ + λ−

β
p
〈(

1|h|>1 + |h|pθ′1|h|≤1

)

|f |pθ′ρx
〉

1
pθ′

)

.

Applying Proposition 6 to the first term in the RHS (with pθ instead of p), we obtain for all

λ ≥ λ0 ∨ 1

‖u‖∞ ≤ C sup
x∈ 1

2Z
d

(

(λ− λ0)
− 1

pθ
〈(

1|h|>1 + |h|pθ1|h|≤1

)

|f |pθρx
〉

1
pθ

+ λ−
β
p
〈(

1|h|>1 + |h|pθ′1|h|≤1

)

|f |pθ′ρx
〉

1
pθ′

)

.

This ends the proof of Theorem 6. �
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10. Proof of Theorem 3

(i) By the assumption of the theorem, the Borel measurable vector field b : Rd → R
d satisfies

either

b ∈ Fδ with δ < 4 (A1)

or






























b ∈ MFδ for some δ <∞,

(div b)− ∈ L1 + L∞,

(div b)
1
2
+ ∈ Fδ+ with δ+ < 4,

|b| 1+α
2 ∈ Fχ for some α > 0 fixed arbitrarily small, and some χ <∞.

(A2)

We define a regularization of b as in Section 6:

bε := Eεb, ε ↓ 0,

where Eε is the Friedrichs mollifier. Then, recall, {bε} are bounded and smooth, preserve all

form-bounds in (A1) or in (A2), and converge to b in [L2
loc]

d or in [L1
loc]

d, respectively.

Step 1. By the classical theory, for every ε > 0, there exist unique strong solution Yε to SDE

Yε(t) = y −
∫ t

0

bε(Yε(s))ds+
√
2B(t), y ∈ R

d,

where {B(t)}t≥0 is a Brownian motion in R
d on a fixed complete probability space (Ω,F ,Ft,P).

Fix T > 0.

Lemma 9. Let vector field g ∈ [Cb(R
d)]d be such that:

1. If b satisfies condition (A2), then

〈|g|1+αϕ, ϕ〉 ≤ χ‖∇ϕ‖22 + cχ‖ϕ‖22, ϕ ∈W 1,2, (10.1)

where constants χ, cχ are from condition (A2).

2. If b satisfies condition (A1), then (10.1) holds with α = 1, χ = δ and cχ = cδ.

Fix γ > 0 by 1 + α = (1 + γ)2. Then

E

∫ t1

t0

|g(Yε(s))|ds ≤ C2(t1 − t0)
γ

1+γ , (10.2)

where constant C2 does not depend on ε, y or t0, t1 (but it depends, by Theorem 6, on constants

χ, cχ).

(We will be applying (10.2) with g = bε.)
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Proof of Lemma 9. First, let g ∈ [Cc(R
d)]d. By Hölder’s inequality,

E

∫ t1

t0

|g(Yε(s))|ds = E

∫ t1

t0

eλte−λt|g(Yε(s))|ds

≤ eλT (t1 − t0)
γ

1+γ

(

E

∫ ∞

0

e−(1+γ)λt|g(Yε(s))|1+γds
)

1
1+γ

= eλT (t1 − t0)
γ

1+γ uε(x)
1

1+γ (10.3)

where uε is the classical solution to non-homogeneous elliptic equation
[

(1 + γ)λ−∆+ bε · ∇
]

uε = |g|1+γ .
Note that, in view of the results of Section 6, condition (A2) implies the second condition (Ā2) on

b of Theorem 5 for bε. (If b satisfies condition (A1), then bε satisfy the same condition in Theorem

5.) Further, we take in Theorem 6 h := g|g|γ and f = 1 in a neighbourhood of the support of

g. In view of 1 + α = (1 + γ)2 and (10.1), h satisfies condition |h| 1+γ
2 ∈ Fχ of Theorem 6. Thus,

Theorem 6 applies and yields

‖uε‖∞ ≤ C sup
x∈ 1

2Z
d

(

〈
(

1|g|>1 + |g|(1+γ)pθ1|g|≤1

)

ρx〉
1
pθ + 〈

(

1|g|>1 + |g|(1+γ)pθ′1|g|≤1

)

ρx〉
1

pθ′

)

,

(10.4)

where the right-hand side is finite (by our choice of ρ) and clearly does not depend on ε. It is

seen now that (10.2) follows from (10.3). Using Fatou’s lemma, we can replace the requirement

that g has compact support by g ∈ [Cb(R
d)]d. �

Inequality (10.2) yields, upon taking g := bε,

E

∫ t1

t0

|bε(Yε(s))|ds ≤ C2(t1 − t0)
γ

1+γ (10.5)

(note that |bε|1+γ have independent of ε finite form-bound χ and constant cχ, see Lemma 6). This

gives us the next lemma. We will write Y yε to emphasize the dependence of solution Yε on y.

Lemma 10. (i) For every β > 0,

sup
ε>0

sup
y∈Rd

P

[

sup
t∈[0,1],σ′∈[0,σ]

|Y yε (t+ σ′)− Y yε (t)| > β

]

≤ ĈH(σ), (10.6)

where constant Ĉ and function H are independent of ε, and H(σ) ↓ 0 as σ ↓ 0.

(ii) For every y ∈ R
d, the family of probability measures

P
ε
x := (P ◦ Y yε )−1, ε > 0,

is tight on the canonical space of continuous trajectories on [0, T ].

Proof of Lemma 10. The argument is standard. For reader’s convenience, we include it below (we

repeat more or less verbatim a part of [32]). Put for brevity T = 1. We have, for a stopping time

0 ≤ τ ≤ 1,

Y yε (τ + σ)− Y yε (τ) =

∫ τ+σ

τ

bn(s, Y
y
ε (s))ds+

√
2(B(τ + σ)−B(τ)), 0 < σ < 1. (10.7)
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Next, note that (10.5) yields

E

∫ τ+σ

τ

|bn(s, Y yε (s))|ds ≤ C0σ
γ

γ+1 , (10.8)

see Remark 1.2 in [56] (to show that (10.5) ⇒ (10.8), the authors of [56] use a decreasing sequence

of stopping times τm converging to τ and taking values in S = {k2−m | k ∈ {0, 1, 2, . . .}}, and
note that the proof of estimate (10.8) with τm in place of τ can be reduced to applying (10.5) on

intervals [t0, t1] := [c, c+ σ], c ∈ S.) Thus, applying (10.8) in (10.7), one obtains

E sup
σ′∈[0,σ]

|Y yε (τ + σ′)− Y yε (τ)| ≤ C0σ
γ

γ+1 + C1σ
1
2 =: H(σ).

Now, applying [57, Lemma 2.7], we obtain: there exists constant Ĉ independent of ε such that

sup
ε

sup
y∈Rd

E

[

sup
t∈[0,1],σ′∈[0,σ]

|Y yε (t+ σ′)− Y yε (t)|
1
2

]

≤ ĈH(σ). (10.9)

Applying Chebyshev’s inequality in (10.9), since H(σ) ↓ 0 as σ ↓ 0, we obtain the first assertion

of the lemma. The second assertion follows from the first one, see [51, Theorem 1.3.2]. �

Fix y ∈ R
d. Let Py be a weak subsequential limit point of {Pεy},

P
εk
y → Py weakly for some εk ↓ 0. (10.10)

Let us rewrite (10.2) as

E
ε
y

∫ t1

t0

|g(ωs)|ds ≤ C2(t1 − t0)
γ

1+γ .

Taking g := bεm and then applying (10.10), we obtain Ey

∫ t1
t0

|bεm(ωs)|ds ≤ C2(t1 − t0)
γ

1+γ , and

hence, using e.g. Fatou’s lemma, Ey
∫ t1
t0

|b(ωs)|ds ≤ C2(t1 − t0)
γ

1+γ <∞.

Step 2. Let us show that, for any fixed y ∈ R
d, any subsequential limit point Py of {Pεy} (say,

(10.10) holds) is a solution to the martingale problem for SDE (4.1). Set

Mϕ,ε
t := ϕ(ωt)− ϕ(ω0) +

∫ t

0

(−∆ϕ+ bε · ∇ϕ)(ωs)ds, ϕ ∈ C2
c .

It suffices to show that Ey[M
ϕ
t1
G] = Ey[M

ϕ
t0
G] for every Bt0-measurable G ∈ Cb

(

C([0, T ],Rd)
)

.

We will do this by passing to the limit in k in

E
εk
y [Mϕ,εk

t1
G] = E

εk
y [Mϕ,εk

t0
G].

That is, we need to prove

lim
k

E
εk
y

∫ t

0

(bεk · ∇ϕ)(ωs)G(ω)ds = Ey

∫ t

0

(b · ∇ϕ)(ωs)G(ω)ds, (10.11)
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Proof of (10.11). First, let us note that repeating the proof of (10.2), but this time selecting

h := g|g|γ , g := bεm1
− bεm2

, f := |∇ϕ|, we have

E
ε
y

∫ t1

t0

∣

∣bεm1
(ωs)− bεm2

(ωs)
∣

∣|∇ϕ(ωs)|ds

≤ C3 sup
x∈ 1

2Z
d

(

〈
(

1|g|>1 + |g|(1+γ)pθ1|g|≤1

)

|∇ϕ|pθρx〉
1
pθ + 〈

(

1|g|>1 + |g|(1+γ)pθ′1|g|≤1

)

|∇ϕ|pθ′ρx〉
1

pθ′

)
1

1+γ

,

Since ϕ has compact support, the RHS converges to 0 as m1, m2 → ∞. Now, it follows from the

weak convergence (10.10) and Fatou’s lemma that

Ey

∫ t1

t0

∣

∣b(ωs)− bεm(ωs)
∣

∣|∇ϕ(ωs)|ds

≤ C3 sup
x∈ 1

2Z
d

(

〈
(

1|b−bεm |>1 + |b− bεm |(1+γ)pθ1|b−bεm |≤1

)

|∇ϕ|pθρx〉
1
pθ

+ 〈
(

1|b−bεm |>1 + |b− bεm |(1+γ)pθ′1|b−bεm |≤1

)

|∇ϕ|pθ′ρx〉
1

pθ′

)
1

1+γ

,

where the RHS converges to 0 as m→ ∞. We are in position to prove (10.11):
∣

∣

∣

∣

E
εnk
y

∫ t

0

(bεnk
· ∇ϕ)(ωs)G(ω)ds− Ey

∫ t

0

(b · ∇ϕ)(ωs)G(ω)ds

∣

∣

∣

∣

≤
∣

∣

∣

∣

E
εnk
y

∫ t

0

|bεnk
− bεm ||∇ϕ|(ωs)|G(ω)|ds

∣

∣

∣

∣

+

∣

∣

∣

∣

E
εnk
y

∫ t

0

(bεm · ∇ϕ)(ωs)G(ω)ds− Ey

∫ t

0

(bεm · ∇ϕ)(ωs)G(ω)ds

∣

∣

∣

∣

+

∣

∣

∣

∣

Ey

∫ t

0

|bεm − b||∇ϕ|(ωs)|G(ω)|ds
∣

∣

∣

∣

,

where the first and the third terms in the RHS can be made arbitrarily small using the estimates

above and the boundedness of G by selecting m, and then nk, sufficiently large. The second term

can be made arbitrarily small in view of (10.10) by selecting nk even larger. Thus, (10.11) follows.

Step 3. Let us now find a subsequence εk ↓ 0 that works for all y ∈ R
d and yields a strong

Markov family of probability measures Py, y ∈ R
d, solutions to the martingale problem for SDE

(4.1). Denote Rελf := uε, where uε is the classical solution of (λ − ∆ + bε · ∇)uε = f in R
d,

f ∈ C∞
c , λ ≥ λ0 ∨ 1;

Rελf(y) = EPε
y

∫ ∞

0

e−λsf(ωs)ds.

By Theorem 6, uε are uniformly in ε bounded on R
d. By Theorem 5 applied to bε, solutions uε are

Hölder continuous on every compact, also uniformly in ε > 0. By the Arzelà-Ascoli theorem and a

standard diagonal argument there exists a subsequence εk ↓ 0 such that sequence {Rελf} converges

locally uniformly on R
d, for every f in a fixed dense subset of Cb. Let us denote the limit by Rλf .

The latter, and the uniform in ε estimate ‖Rελf‖∞ ≤ 1
λ‖f‖∞ allow us to extend Rλf to all f ∈ Cb.

Thus, Rλf ∈ Cb, f ∈ Cb. Now, for this subsequence εk ↓ 0, for any yk → y, any two subsequential
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limits P1, P2 of {Pεkyk} (we use (10.10)) have the same finite-dimensional distributions (see [5] for

details, if needed) and therefore coincide: Py := P
1 = P

2. Hence EPy

∫∞
0
e−λsf(ωs)ds = Rλf(y).

By what was proved above, Py is a martingale solution of (4.1). A simple argument (see [5]) now

gives that, for every t > 0, y 7→ EPy
f(Xt) is a continuous function. The latter, in turn, yields

that {Py}y∈Rd is a strong Markov family (the proof can be found e.g. in [5] or [6, Sect. I.3]).

This completes the proof of assertion (i).

(ii) Let bn be defined by (4.2), so that vector fields {bn} do not increase the form-bounds of

b. In the end of the proof of (i) we show that there exists a subsequence bnk
(for brevity, {bn}

itself) such that, for every f ∈ C∞
c (Rd), the classical solutions {un} to elliptic equations

(

λ−∆+ bn · ∇
)

un = f

converge locally uniformly on R
Nd to

x 7→ EPx

∫ ∞

0

e−λsf(ω1
s , . . . , ω

N
s )ds, x ∈ R

Nd, (10.12)

where λ is assumed to be sufficiently large. This yields the local Hölder continuity of u. At the

same time, un are weak solutions of (2.4) in the sense of Definitions 5 and 7. The possibility to

pass to the limit ε ↓ 0 in these definitions follows from the standard compactness argument (for

details, if needed, see e.g. [39]).

(iii) The proof goes by showing that vn constitute a Cauchy sequence in L∞([0, 1], Lp(Rd)), see

[25], see also [33]. At the elliptic level this was done earlier in [41] using Trotter’s theorem. The

proof of the (Lp, Lq) estimate is due to [50]. (Strictly speaking, these papers did not consider

condition (A3), but it is easy to modify the proofs there to cover the case (A3) as well.)

(iv) It suffices to show that, for all µ ≥ µ0, for every f ∈ C∞
c ,

Rεµf → (µ+ Λp)
−1f in C∞ as ε ↓ 0, (10.13)

possibly after a modification of (µ+Λp)
−1f on a measure zero set. The rest follows from estimates

‖Rµ,εf‖∞ ≤ µ−1‖f‖∞, ‖(µ+Λp)
−1f‖∞ ≤ µ−1‖f‖∞ (an immediate consequence of the fact that

the corresponding semigroups are L∞ contractions) using a density argument.

Let us prove (10.13). Put uε := Rµ,εf , so uε is the classical solution to (µ−∆+ b · ∇)uε = f

on R
d. Then, by Propositions 5 and 6 (with |h| = 1), for all µ(≥ 1 ∨ λ0) + 1

sup
y∈B 1

2
(x)

|uε(y)| ≤ C

(

〈|f |pθρx〉
1
pθ + 〈|f |pθ′ρx〉

1
pθ′

)

for constant C independent of ε. It is seen now that for a fixed f ∈ C∞
c , for a given ε > 0, we

can find R > 0 such that

sup
y∈Rd\B̄R(0)

|uε(y)| < ε.

In turn, inside the closed ball B̄R(0), the family of solutions {uε}ε>0 is equicontinuous by Theorem

5. So, applying Arzelà-Ascoli theorem and using the convergence result for the semigroups in Lp

from assertion (iii), we obtain (10.13).

(v) The proof is an application of Proposition 1 and Gehring’s lemma:
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Lemma 11. Assume that there exist constants K ≥ 1, 1 < q <∞ such that, for given 0 ≤ g ∈ Lq,

0 ≤ h ∈ Lq ∩ L∞ we have
(

1

|BR|
〈gq1BR

〉
)

1
q

≤ K

|B2R|
〈g1B2R

〉+
(

1

|B2R|
〈hq1B2R

〉
)

1
q

for all 0 < R < 1
2 . Then g ∈ Ls for some s > q and

(

1

|BR|
〈gs1BR

〉
)

1
s

≤ C1

(

1

|B2R|
〈gq1B2R

〉
)

1
q

+ C2

(

1

|B2R|
〈hs1B2R

〉
)

1
s

.

We are in position to prove assertion (v). Without loss of generality, f ≥ 0, so un ≥ 0.

Step 1. Set (un)B2R
:= 1

|B2R| 〈un1B2R
〉. Repeating the proof of Proposition 1 with p = 2 for

un − (un)B2R
, we obtain

〈|∇un|21BR
〉 ≤ K1

|B2R|
2
d

〈(un − (un)B2R
)21B2R

〉+K2〈|f − µun|21B2R
〉, 0 < R <

1

2
. (10.14)

By the Sobolev-Poincaré inequality,

(

1

|B2R|
〈(un − (un)B2R

)21B2R
〉
)

1
2

≤ C|BR|
1
d

(

1

|B2R|
〈|∇un|

2d
d+21B2R

〉
)

d+2
2d

, (10.15)

i.e.

〈(un − (un)B2R
)21B2R

〉 ≤ C2|BR|
2
d+1

(

1

|B2R|
〈|∇un|

2d
d+21B2R

〉
)

d+2
d

.

Then the condition of the Gehring lemma is verified with g = |∇un|
2d

d+2 , gq = |∇un|2 (so q = d+2
d )

and h = c|f − µun|
2d

d+2 . Hence there exists s > d+2
d such that

(

1

|BR|
〈|∇un|s

2d
d+21BR

〉
)

1
s

≤ C1

(

1

|B2R|
〈|∇un|21B2R

〉
)

d
d+2

+ C2

(

1

|B2R|
〈|f − µun|s

2d
d+21B2R

〉
)

1
s

,

where all constants are independent of n.

Now, passing in both sides of the previous inequality to the cubes (inscribed in BR in the

left-hand side and circumscribed over B2R in the right-hand side), then considering an equally

spaced grid in R
d so that the smaller cubes centered at the nodes of the grid cover Rd, applying

the previous estimate on each cube, and then summing up, we obtain the global estimate

‖∇un‖2s 2d
d+2

≤ C3‖∇un‖22 + C4‖f − µun‖2s 2d
d+2

.

Step 2. Let us show that supn ‖∇un‖22 <∞. To this end, we multiply (µ−∆+ bn · ∇)un = f

by un and integrate, obtaining µ‖un‖22 + ‖∇un‖22 + 〈bn · ∇un, un〉 = 〈f, un〉, where

〈bn · ∇un, un〉 = −1

2
〈div bn, u2n〉 ≥ −1

2
〈(div bn)+, u2n〉.

Hence, by our form-boundedness assumption on (div bn)+,

(

µ− cδ+
2

)

‖un‖22 +
(

1− δ+
2

)

‖∇un‖22 ≤ 〈f, un〉. (10.16)
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So, applying the quadratic inequality in the right-hand side, we arrive at (µ − cδ+
2 − 1

2 )‖un‖22 +
(1− δ+

2
)‖∇un‖22 ≤ 1

2
‖f‖22. Since δ+ < 2, supn ‖∇un‖22 <∞ for µ ≥ µ0 :=

cδ+
2

+ 1
2
.

Step 3. Next, ‖un‖2 ≤ C‖f‖2 and a priori bound ‖un‖∞ ≤ ‖f‖∞ yield supn ‖un‖s 2d
d+2

< ∞.

Hence supn ‖f − µun‖2s 2d
d+2

<∞.

Steps 1-3 give us a gradient bound

sup
n

‖∇un‖2s 2d
d+2

<∞

which we are going to use at the next step.

Step 4. Put h := un − um. Then

µ‖h‖22 + ‖∇h‖22 + 〈bn · ∇h, h〉+ 〈(bn − bm) · ∇um, h〉 = 0.

So,

(

µ− cδ+
2

− 1

2

)

‖h‖22 + (1− δ+
2
)‖∇h‖22 ≤ |〈(bn − bm) · ∇um, h〉|. (10.17)

In turn, the right-hand side

|〈(bn − bm) · ∇um, h〉| ≤ ‖bn − bm‖2−κ‖∇um‖s 2d
d+2

2‖f‖∞
where 0 < κ < 1 is defined by

2− κ :=

(

s
2d

d+ 2

)′
=

s 2d
d+2

s 2d
d+2 − 1

(recall that s 2d
d+2 > 2). Since {bn} converge to b in L2−κ , we obtain that the RHS of (10.17)

converges to zero as n, m→ ∞, so {un} is a Cauchy sequence in L2. (This yields the independence

of the limit on a particular choice of {bn} since we can always combine two different approximations

of b obtaining again a Cauchy sequence of the approximating solutions.) �

Remark 17. We carried out the proof of assertion (v) assuming that δ+ < 2 instead of δ+ < 4

as in the other assertions. In fact, to handle δ+ < 4 we need to consider (µ−∆+ bn ·∇)un = f in

Lp, p > 4
4−δ+ . However, the step where we use the Sobolev-Poincaré inequality (10.15) in (10.14)

is ultimately an L2 argument. Hence the need for a more restrictive condition δ+ < 2.

11. Proofs of Theorem 1(i),(ii) and Theorem 2(i)

Theorem 1(i),(ii) and Theorem 2(i) follows right away, in view of Lemmas 1, 2, from Theorem

3(i), (ii) where we consider the general SDE in R
Nd with Y = (X1, . . . , XN ), B = (B1, . . . , BN ),

y = (x1, . . . , xN) and drift b : RNd → R
Nd defined by (2.19). �

12. Proof of Theorem 2(ii)

This follows right away from Theorem 5(iii) and Lemmas 1, 2.
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13. Proof of Theorem 1(iii)-(v)

(iii) follows from Theorem 3(iii) and Lemmas 1, 2.

(iv) follows from the uniqueness result in [30], see also [28], and Lemma 1.

(v) follows from the result in [29] upon applying Lemma 1. The assertion before, i.e. that

Theorem 1(i)-(iv) is also valid for the interaction kernels of the form (2.8), follows upon applying

an appropriate (straightforward) modification of Lemma 1.

14. Proof of Theorem 2(iii), (iv)

(iii) Since the sum of two form-bounded vector fields is again form-bounded, we only need to

improve Lemma 2 for K(y) =
√
κd−2

2
|y|−2y and then simply repeat the proof of Theorem 1(i)-

(iii). In Lemma 2 we have three estimates (2.20), (2.21) (2.22) for b = (b1, . . . , bN ) : R
Nd → R

Nd,

where now

bi(x) :=
√
κ
d− 2

2

1

N

N
∑

j=1,j 6=i

xi − xj
|xi − xj|2

, x = (x1, . . . , xn) ∈ R
Nd, 1 ≤ i ≤ N. (14.1)

We do not need to change (2.20) and (2.22) since the actual values of the form-bounds there are

not important for the sake of repeating the proof of Theorem 2, only their finiteness matters. The

form-bound δ+ in (2.21), however, plays a crucial role. Let us estimate it using the many-particle

Hardy’s inequality (1.20):

(div b)+ = div b =

N
∑

i=1

1

N

N
∑

j=1,j 6=i
divK(xi − xj)

=
√
κ
(d− 2)2

N

∑

1≤i<j≤N

1

|xi − xj|2
.

Applying (1.20), we obtain that (div b)
1
2
+ ∈ Fδ+ with δ+ =

√
κ. Armed with this result, i.e. a

replacement of Lemma 2, we repeat the proof of Theorem 2 (i.e. we apply Theorem 3 where we

still have δ+ < 4).

(iv) We apply Theorem 8 from Appendix A. There Ω := R
Nd and µ is the Lebesgue measure on

R
Nd. The semigroup e−tΛ and thus the heat kernel e−tΛ(x, y) is from assertion (ii). The weights

{ϕs}s>0 are defined by

ϕs(x) :=
∏

1≤i<j≤N
η(s−

1
2 |xi − xj |), s > 0.

It is easily seen that these weights ϕs satisfy conditions (S2) and (S3) of Theorem 8. In turn,

condition (S1) with j = d
d−2 and r > 2(2 − N−1

N

√
κ)−1 was verified in Theorem 2(ii) under

hypothesis (2.15), see (2.5). Let us verify the “desingularizing L1 → L1 bound” (S4) for 0 < s ≤ t:

Step 1. Set

ηs(r) := η(s−
1
2 r), r > 0
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and put

ϕεs(x) ≡ ϕε(x) :=
∏

1≤i<j≤N
ηs(|xi − xj|ε), |xi − xj|ε :=

√

|xi − xj |2 + ε, ε > 0.

Define

ψε(x) :=
∏

1≤i<j≤N
(s−

1
2 |xi − xj |ε)−

√
κd−2

2
1
N .

and put

bε := −∇xψ
ε

ψε
(clearly, independent of s).

This is a vector field R
Nd → R

Nd such that

bε · ∇x =
√
κ
d− 2

2

1

N

N
∑

i=1

N
∑

j=1,j 6=i

xi − xj
|xi − xj|2ε

· ∇xi
.

Without loss of generality, we discuss the (minus) first component RNd → R
d of bε:

∇x1
ψε

ψε
=

1

ψε

∑

2≤k≤N

∏

1≤i<j≤N,(i,j)6=(1,k)

|xi − xj |−
√
κd−2

2
1
N

ε ∇x1

(

|x1 − xk|−
√
κd−2

2
1
N

ε

)

=
∑

2≤k≤N

∇x1
|x1 − xk|−

√
κ d−2

2
1
N

ε

|x1 − xk|−
√
κ d−2

2
1
N

ε

= −
√
κ
d− 2

2

1

N

∑

2≤k≤N

x1 − xk
|x1 − xk|2ε

.

In the same way,

∇x1
ϕε

ϕε
=

∑

2≤k≤N

∇x1
ηs(|x1 − xk|ε)

ηs(|x1 − xk|ε)
.

We now compare these quantities (this will be needed at the next step):

(a) If |x1 − xk|ε ≤
√
s for all 2 ≤ k ≤ N , then, by the definition of η,

−∇x1
ψε

ψε
+

∇x1
ϕε

ϕε
= 0.

Therefore,

∇x1
ϕε

ϕε
·
(

− ∇x1
ψε

ψε
+

∇x1
ϕε

ϕε
)

= 0, divx1

(

− ∇x1
ψε

ψε
+

∇x1
ϕε

ϕε
)

= 0.

(b) If there exists one k0 such that |x1−xk0 |ε ≥ 2
√
s, but for the other k 6= k0 |x1−xk|ε ≤

√
s,

then, since x1 7→ ηs(|x1 − xk0 |ε) is constant and so ∇x1
ϕε = 0, we have

∇x1
ψε

ψε
− ∇x1

ϕε

ϕε
= −

√
κ
d− 2

2

1

N

x1 − xk0
|x1 − xk0 |2ε

.
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Hence

∇x1
ϕε

ϕε
·
(

− ∇x1
ψε

ψε
+

∇x1
ϕε

ϕε
)

= 0,

∣

∣

∣

∣

divx1

(

− ∇x1
ψε

ψε
+

∇x1
ϕε

ϕε
)

∣

∣

∣

∣

≤
√
κ
(d− 2)2

2

1

N
4s−1.

(c) More generally, if there exist 2 ≤ M ≤ N − 1 indices k0 such that |x1 − xk0 |ε ≥ 2
√
s, but

for the other k 6= k0 |x1 − xk|ε ≤
√
s, then we have

∇x1
ϕε

ϕε
·
(

− ∇x1
ψε

ψε
+

∇x1
ϕε

ϕε
)

= 0,

∣

∣

∣

∣

divx1

(

− ∇x1
ψε

ψε
+

∇x1
ϕε

ϕε
)

∣

∣

∣

∣

≤
√
κ
(d− 2)2

2

M

N
4s−1.

Over the annuli
√
s < |x1 − xk|ε < 2

√
s we make a change of variable to finally obtain, for all

possible values of |x1 − xk|ε, 2 ≤ k ≤ N ,
∣

∣

∣

∣

∇x1
ϕε

ϕε
·
(

− ∇x1
ψε

ψε
+

∇x1
ϕε

ϕε
)

∣

∣

∣

∣

≤ c1
N − 1

N
s−1,

∣

∣

∣

∣

divx1

(

− ∇x1
ψε

ψε
+

∇x1
ϕε

ϕε
)

∣

∣

∣

∣

≤ c2
N − 1

N
s−1

for constants c1 and c2 independent of ε and s.

The same holds for the other components of bε = −∇xψε

ψε
. Thus,

∣

∣

∣

∣

∇xϕ
ε

ϕε
·
(

bε +
∇xϕ

ε

ϕε
)

∣

∣

∣

∣

≤ c1
N − 1√
N

s−1,

∣

∣

∣

∣

div
(

bε +
∇xϕ

ε

ϕε
)

∣

∣

∣

∣

≤ c2
N − 1√
N

s−1. (14.2)

Step 2.Define the approximating operators Λε := −∆x + bε · ∇x having domain W2,1 = (1 −
∆)−1L1. Since ϕε, (ϕε)−1 are bounded and continuous, one sees right away that ϕεe−tΛε(ϕε)−1

is a strongly continuous semigroup in L1 whose generator coincides with −ϕεΛε(ϕε)−1 having

domain W2,1. This generator can be computed explicitly:

ϕεΛε(ϕε)−1 = −∆+∇ · (bε + 2
∇ϕε
ϕε

) +Wε, (14.3)

Wε := −∇ϕε
ϕε

·
(

bε +
∇ϕε
ϕε

)

− div
(

bε +
∇ϕε
ϕε

)

.

By (14.2), potential Wε is (uniformly in ε) bounded: |Wε| ≤ N−1√
N

c
s for a constant c independent

of ε. Employing formula (14.3) and using the general fact that et(∆−∇·f) is an L1 contraction, we

obtain

‖ϕεe−tΛε

(ϕε)−1h‖1 ≤ e
cN−1√

N
t
s ‖h‖1, h ∈ L1. (14.4)

It remains to pass to the limit ε ↓ 0 in (14.4). This is done at the next step.

Step 3. Define b = −∇xψ
ψ , where ψ(x) =

∏

1≤i<j≤N |xi − xj |−
√
κd−2

2
1
N is a Lyapunov function

of the formal adjoint of Λ (i.e. 2.17 holds). Then

b · ∇x =
√
κ
d− 2

2

1

N

N
∑

i=1

N
∑

j=1,j 6=i

xi − xj
|xi − xj |2

· ∇xi

It is seen using e.g. the Monotone convergence theorem that bε → b in [L2
loc]

Nd. Moreover, the

vector fields bε do not increase the form-bound δ = κ
(

N−1
N

)2
(< 4) of b. Therefore, by Theorem
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3(iii),

e−tΛε → e−tΛ in Lr(RNd), (14.5)

where r > 2
2−N−1

N

√
κ
.

Now, from (14.4) we have

‖ϕεe−tΛ
ε

g‖1 ≤ e
cN−1√

N
t
s ‖ϕεg‖1, g ∈ ϕL1 ∩ L∞.

In view of (14.5) and since ϕε → ϕ a.e., we can use Fatou’s lemma to obtain ‖ϕe−tΛg‖1 ≤
ec

t
s ‖ϕg‖1, which yields condition (S4) of Theorem 8 (recall that by our assumption s ≥ t).

Thus, Theorem 8 applies and gives assertion (iv) of Theorem 2. �

15. Proof of Theorem 7

We will need the following result on the regularization of the vector field b in Theorem 7.

Lemma 12. Assume that b ∈ [W 1,1
loc (R

d)]d has symmetric Jacobian Db = (∇kbi)
d
k,i=1 and the

negative part B− of matrix

B(b) := Db− div b

q
I, for some q > (d− 2) ∨ 2,

has normalized eigenvectors ej and eigenvalues λj ≥ 0 satisfying
√

λjej ∈ Fνj . Set ν :=
∑d
j=1 νj .

Set bε := Eεb. The following are true:

1.

B(bε) +EεB− ≥ 0,

2.

〈B−h, h〉 ≤ ν〈|∇|h||2〉+ cν〈|h|2〉, (15.1)

and

〈(EεB−)h, h〉 ≤ ν〈|∇|h||2〉+ cν〈|h|2〉, ε > 0,

for all h ∈ [C∞
c (Rd)]d, with cν :=

∑d
j=1 cνj .

Proof. 1. We have, by definition, B(b) = B+−B−, and B(bε) = EεB+−EεB−. Clearly, EεB+ ≥ 0,

which yields the required.

2. We have B− =
∑d
j=1 λjeje

⊤
j . Put for brevity λ = λj and e = ej . Denote the components

of e by ek, k = 1, . . . , d. Then 〈λ(ee⊤)h, h〉 =
∑d
k,i=1〈hk

√
λek

√
λeihi〉 = 〈λ(h · e)2〉 ≤ 〈λ|h|2|e|2〉.
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Therefore,

〈B−h, h〉 ≤
d

∑

j=1

〈λj |h|2|ej |2〉

(we use
√

λjej ∈ Fνj )

≤
d

∑

j=1

νj〈|∇|h||2〉+
d

∑

j=1

cνj 〈|h|2〉,

which gives us the first inequality in assertion 2.

Let us prove the second inequality in assertion 2. Writing again λ = λj and e = ej and denoting

the k-th component of e by ek, we have

〈Eε(λee⊤)h, h〉 =
d

∑

k,i=1

〈Eε(
√
λek

√
λei)hkhi〉 =

d
∑

k,i=1

〈
√
λek

√
λeiEε(hkhi)〉

≤
d

∑

k,i=1

〈
√

Eε|hk|2
√
λ|ek|

√
λ|ei|

√

Eε|hi|2〉

≤ 〈λ|e|2, |hε|2〉,

where hε denotes the vector field with k-th component
√

Eε|hk|2. Hence, using the previous

estimate, we obtain

〈(EεB−)h, h〉 =
d

∑

j=1

〈Eε(λjeje⊤j )h, h〉 ≤
d

∑

j=1

〈λj|ej|2, |hε|2〉

(use
√

λjej ∈ Fνj )

≤ ν〈|∇|hε||2〉+ cν〈|hε|2〉
(note that |hε| =

√

Eε|h|2 and apply (6.1))

≤ ν〈|∇|h||2〉+ cν〈|h|2〉,

as needed. �

Proof of Theorem 7 in the case drift b satisfies condition (B2). We start with the proof of assertion

(ii). Put

w := ∇u, wi := ∇iu.

Multiplying equation (µ−∆+ b · ∇)u = f by the test function

φ := −
d

∑

i=1

∇i(wi|w|q−2) = −∇ · (w|w|q−2)
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and integrating by parts twice in 〈−∆u, φ〉, i.e.

〈−∆u,−
d

∑

i=1

∇i(wi|w|q−2)〉 =
d

∑

i=1

〈∇iw,∇(wi|w|q−2)〉 ≡
d

∑

i=1

〈∇wi,∇(wi|w|q−2)〉

=

d
∑

i=1

〈|∇wi|2|w|q−2〉+ (q − 2)

d
∑

i=1

〈∇wi, wi|w|q−3∇|w|〉

=

d
∑

i=1

〈|∇wi|2|w|q−2〉+ (q − 2)〈1
2
∇|w|2, |w|q−3∇|w|〉,

we obtain

µ〈|w|q〉+ Iq + (q − 2)Jq + 〈b · w, φ〉 = 〈f, φ〉, (15.2)

where

Iq :=

d
∑

i=1

〈

|∇wi|2, |w|q−2
〉

, Jq :=
〈

|∇|w||2, |w|q−2
〉

.

Step 1. Regarding term 〈b · w, φ〉 in (15.2), we have

〈b · w, φ〉 = 〈B̃w, w|w|q−2〉+ 〈b · ∇|w|, |w|q−1〉 B̃ := (∇kbi)
d
k,i=1

= 〈B̃w, w|w|q−2〉 − 1

q
〈div b, |w|q〉

≥ −〈B−w,w|w|q−2〉.

Hence, applying (15.1), we arrive at

〈b · w, φ〉 ≥ −ν〈
∣

∣∇|w| q2
∣

∣

2〉 − cν〈|w|q〉

= −ν q
2

4
Jq − cν〈|w|q〉,

so (15.2) yields

(µ− cν)〈|w|q〉+ Iq +

(

q − 2− q2

4
ν

)

Jq ≤ 〈f, φ〉. (15.3)

Step 2. Let us estimate 〈f, φ〉 in the previous inequality. To this end, we evaluate φ:

〈f, φ〉 = −〈f, |w|q−2∆u〉 − (q − 2)〈f, |w|q−3w · ∇|w|〉. (15.4)

(a) We estimate

|〈f, |w|q−2∆u〉| ≤ ε0〈|w|q−2|∆u|2〉+ 1

4ε0
〈f2, |w|q−2〉, (15.5)

where ε0 > 0 will be chosen sufficiently small.
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Let us deal with the first term in the RHS of (15.5). Representing |∆u|2 = |∇ · w|2 and

integrating by parts twice, we obtain

〈|w|q−2|∆u|2〉 = −〈∇|w|q−2 · w,∆u〉+
d

∑

i=1

〈wi∇|w|q−2,∇wi〉+ Iq

≤ (q − 2)

[

1

4κ
〈|w|q−2|∆u|2〉+ κJq

]

+ (q − 2)

(

1

2
Iq +

1

2
Jq

)

+ Iq.

So, for any fixed κ > q−2
4 ,

(

1− q − 2

4κ

)

〈|w|q−2|∆u|2〉 ≤ Iq + (q − 2)

(

κJq +
1

2
Iq +

1

2
Jq

)

. (15.6)

Let us handle the second term in the RHS of (15.5):

〈f2, |w|q−2〉 ≤ ‖f‖2 qd
d+q−2

‖w‖q−2
qd

d−2

≤ cS‖f‖2 qd
d+q−2

‖∇|w| q2 ‖2
(q−2)

q

2 = C‖f‖2 qd
d+q−2

J
q−2
q

q , C =
cSq

2

4

≤ q − 2

q
Cε

q
q−2Jq +

2

q
Cε−

q
2 ‖f‖q qd

d+q−2

.

(b) We estimate

(q − 2)|〈−f, |w|q−3w · ∇|w|〉| ≤ (q − 2)J
1
2
q 〈f2, |w|q−2〉 1

2

≤ (q − 2)
(

ε1Jq + 4ε−1
1 〈f2, |w|q−2〉

)

,

where we estimate the very last term in the same way as above.

Substituting the above estimates in (15.4), we obtain

|〈f, φ〉| ≤ cε0(Iq + Jq) +
c1(ε, ε1)

ε0
Jq +

c2(ε, ε1)

ε0
‖f‖q qd

d+q−2

, (15.7)

where c1(ε, ε1) > 0 can be made as small as needed by first selecting ε1 sufficiently small, and

then selecting ε even smaller.

Step 3. Now, we return to (15.3). By (15.7),

(

µ− cν
)

〈|w|q〉+ (1− cε0)Iq +
(

q − 2− q2

4
ν − cε0 −

c1(ε, ε1)

ε0

)

Jq ≤
c2(ε, ε1)

ε0
‖f‖q qd

d+q−2

.

By the pointwise inequality

|∇|w||2 =

∣

∣

∣

∣

∑d
i=1wi∇wi

|w|

∣

∣

∣

∣

2

≤
(∑d

i=1 |wi||∇wi|
|w|

)2

≤
d

∑

i=1

|∇wi|2,

we have

Jq ≤ Iq.

In particular, provided ε0 is sufficiently small so that 1−cε0 ≥ 0, we have (1−cε0)Iq ≥ (1−cε0)Jq.
Therefore,

(

µ− cν
)

〈|w|q〉+
(

q − 1− q2

4
ν − c(ε0, ε, ε1)

)

Jq ≤ C(ε0, ε, ε1)‖f‖q qd
d+q−2

, (15.8)
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where constant c(ε0, ε, ε1) can be made as small as needed by first selecting ε1 sufficiently small,

and then selecting ε even smaller (ε0 is already fixed). Take µ0 := cν . Recalling that Jq =
4
q2 ‖∇|∇u| q2 ‖22, we obtain the required gradient estimate from (15.8).

Proof of assertion (i). Steps 1 and 3 do not change. Step 2 now consists of estimating 〈|g|f, φ〉,
which we represent as

〈|g|f, φ〉 = −〈|g|f, |w|q−2∆u〉 − (q − 2)〈|g|f, |w|q−3w · ∇|w|〉.

(a′) We have

|〈|g|f, |w|q−2∆u〉| ≤ ε0〈|w|q−2|∆u|2〉+ 1

4ε0
〈|g|2f2, |w|q−2〉, ε0 > 0,

where 〈|w|q−2|∆u|2〉 is estimates in the same way as in (a) above, and

〈|g|2f2, |w|q−2〉 = 〈|g|2− 4
q |w|q−2, |g| 4q f2〉

≤ q − 2

q
ε

q
q−2 〈|g|2|w|q〉+ 2

q
ε−

q
2 〈ρ|g|2fq〉

(we are using g ∈ Fδ1)

≤ q − 2

q
ε

q
q−2

[

δ1
q2

4
Jq + cδ1〈|w|q〉

]

+
2

q
ε−

q
2

〈

|g|2fq
〉

.

(b′) We estimate

(q − 2)|〈|g|f, |w|q−3w · ∇|w|〉| ≤ (q − 2)J
1
2
q 〈|g2|f2, |w|q−2〉 1

2

≤ (q − 2)
(

ε1Jq + 4ε−1
1 〈|g|2f2, |w|q−2〉

)

,

where we bound 〈|g|2f2, |w|q−2〉 as in (a′).
Now, arguing as above, we arrive at

(

µ− cν − c0(ε0, ε1, ε)
)

〈|w|q〉+
(

q − 1− q2

4
ν − c(ε0, ε, ε1)

)

Jq ≤ C(ε0, ε, ε1)〈|g|2fq
〉

,

where constant c(ε0, ε, ε1) can be made as small as needed by selecting ε1 sufficiently small and

then selecting ε even smaller. So, taking µ0 := cµ + c0(ε0, ε1, ε), we obtain the required gradient

estimate.

Proof of Theorem 7 in the case drift b satisfies condition (B1). One needs to estimate term 〈b·w, φ〉
in (15.2) differently. Indeed, b is no longer differentiable and hence one cannot integrate by parts.

Instead, arguing as in [41], we evaluate the test function φ as

〈b · w, φ〉 = −〈b · w, |w|q−2∆u〉 − (q − 2)〈b · w, |w|q−3w · ∇|w|〉,

and then re-uses the elliptic equation to express ∆u in terms of µu, b · w and f (or |g|f). Then

we repeat the argument from [41] up to the estimates on |〈f, φ〉| (assertion (ii)) and |〈|g|f, φ〉|
(assertion (i)), which we take from Step 2 above.
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16. Proof of Theorem 4

Let bn be constructed as in Lemma 3, i.e.

bn = Eεnb, εn ↓ 0,

so that bn are bounded, smooth, converge to b locally in L2 and, crucially, do not increase neither

form-bound δ of b nor constant cδ.

A comment regarding the case when b satisfies condition (B2). Below we use gradient bounds

from Theorem 7 for vector fields bn. The proof of these gradient bounds depends on a somewhat

less restrictive condition than (B2), i.e. b ∈ Fδ, δ <∞, and

〈(EεnB−)h, h〉 ≤ ν〈|∇|h||2〉+ cν〈|h|2〉, (16.1)

where B− is the negative part of matrix (∇kb
i)dk,i=1 − div b

q I. (Indeed, if B+ denotes the positive

part of the last matrix, we have

(∇kb
i
n)
d
k,i=1 −

div bn
q

I = EεnB+ − EεnB−, EεnB± ≥ 0,

and can repeat the proof of Theorem 7 for bn and EεnB−.) By Lemma 12, inequality (16.1) does

hold with constants ν =
∑d
j=1 νj and cν =

∑d
j=1 cνj that are, obviously, independent of {εn},

and so the constants in the gradient bounds in Theorem 7 for bn do not depend on n.

Proof of assertion (i). Let {Px}x∈Rd be the strong Markov family of martingale solutions to (4.1)

constructed in Theorem 3. Fix some y. Our goal is prove the following estimate: there exists

generic q > (d − 2) ∨ 2 and C such that, for all g ∈ Fδ1 , δ1 < ∞, and all λ greater than some

generic λ0,

EPy

∫ ∞

0

e−λs|gf |(ωs)ds ≤ C‖g|f | q2 ‖
2
q

2 (16.2)

for all f ∈ Cc. Let gm the bounded smooth regularization of g constructed according to Lemma

3. Using the gradient estimate of Theorem 7(i), after applying the Sobolev embedding theorem

twice, we obtain

EPn
y

∫ ∞

0

e−λs|gmf |(ωs)ds ≤ C‖gm|f |
q
2 ‖

2
q

2 , n,m = 1, 2, . . . ,

where P
n
x is the martingale solution of the regularized SDE

Y (t) = y −
∫ t

0

bn(Y (s))ds+
√
2B(t), t ≥ 0

and, by the construction of Px in the proof of Theorem 3, P
n
x → Px weakly (we pass to a

subsequence of {bn} if necessary). Thus, we have

EPy

∫ ∞

0

e−λs|gmf |(ωs)ds ≤ C‖gm|f |
q
2 ‖

2
q

2 , m = 1, 2, . . .

Fatou’s lemma applied in m now yields (16.2) and thus ends the proof of (i).
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Proof of assertion (i′). Let {P1
y}y∈Rd , {P2

y}y∈Rd be two Markov families of martingale solutions

to SDE

Y (t) = y −
∫ t

0

b(Y (s))ds+
√
2B(t), t ≥ 0.

Fix some y. By our assumption, there exists q > (d − 2) ∨ 2 such that, for all g ∈ Fδ1 , δ1 < ∞,

and all λ greater than some generic λ0,

EPi
y

∫ ∞

0

e−λs|gf |(ωs)ds ≤ C‖g|f | q2 ‖
2
q

2 (16.3)

for all f ∈ Cc. Let vn be the classical solution to equation

(λ−∆+ bn · ∇)vn = −F,

where F ∈ Cc(R
d). We will need the weight ρ(x) = (1 + k|x|2)−β , k > 0, where constant β is

fixed greater than d
2 so that ρ ∈ L1(Rd). By Itô’s formula applied to e−λtρvn, we have

EPi
y
[e−λt(ρvn)(ωt)] = ρ(y)vn(y) + EPi

y

∫ t

0

ρe−λs(−λ+∆− b · ∇)vn(ωs)ds− Sn,

where Sn is the remainder term given by

Sn := EPi
y

∫ t

0

e−λs[−(∆ρ)vn − 2∇ρ · ∇vn + b · (∇ρ)vn](ωs)ds.

So,

EPi
y
[e−λt(ρvn)(ωt)] = ρ(y)vn(y) + EPi

y

∫ t

0

ρe−λsF (ωs)ds

− EPi
y

∫ t

0

[e−λsρ(b− bn) · ∇vn](ωs)ds− Sn. (16.4)

Proposition 7. For every k > 0,

EPi
y

∫ t

0

e−λs[ρ(b− bn) · ∇vn](ωs)ds→ 0

as n ↑ ∞ uniformly in t > 0.

Proof. We have

|EPi
y

∫ t

0

[e−λsρ(b− bn) · ∇vn](ωs)ds| ≤ |EPi
y

∫ ∞

0

[e−λsρ(b− bn) · ∇vn](ωs)ds|

(we apply (16.3) with g := ρ(b− bn) ∈ F2δ)

≤ K‖ρ(b− bn)|∇vn|
q
2 ‖

2
q

2 .

In turn, for a 0 < θ < 1, we have

‖ρ(b− bn)|∇vn|
q
2 ‖2 ≤ ‖ρ(b− bn)‖θ2‖ρ(b− bn)|∇vn|

q
2(1−θ)‖1−θ2 . (16.5)
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Regarding the second multiple in the RHS of (16.5): we assume that θ is chosen to be sufficiently

close to 0 so that q
1−θ > (d− 2) ∨ 2. Then, by b− bn ∈ F2δ,

‖ρ(b− bn)|∇vn|
q

2(1−θ)‖22 ≤ ‖(b− bn)|∇vn|
q

2(1−θ)‖22
≤ 2δ‖∇|∇vn|

q
2(1−θ)‖22 + 2cδ‖|∇vn|

q
2(1−θ)‖22.

Hence, by the gradient estimate of Theorem 7(i), supn ‖ρ(b− bn)|∇vn|
q

2(1−θ)‖22 <∞.

The first multiple in the RHS of (16.5):

‖ρ(b− bn)‖22 ≤ 〈1BR(0)|b− bn|2〉+ 〈(1− 1BR(0))ρ, ρ|b− bn|2〉
≤ 〈1BR(0)|b− bn|2〉+ (1 + kR2)−β〈ρ|b− bn|2〉.

Since bn → b in L2
loc, the first integral can be made as small as needed (uniformly in R) by

selecting n sufficiently large. In the second integral supn〈ρ|b− bn|2〉 <∞, since, by b− bn ∈ F2δ,

〈ρ|b− bn|2〉 ≤ 2δ〈(∇√
ρ)2〉+ 2cδ〈ρ〉,

so it remains to apply |∇ρ| ≤ β
√
kρ. At the same time, (1 + kr2)−β can be made as small as

needed by selecting r sufficiently large. This completes the proof. �

Proposition 8. Sn → 0 as k ↓ 0 uniformly in n and t.

Proof. Using |∇ρ| ≤ β
√
kρ, |∆ρ| ≤ β2k, we have

|Sn| ≤
√
kCEPi

y

∫ t

0

[ρ|vn|+ 2ρ|∇vn|+ ρ|b||vn|](ωs)ds.

Now we can argue as in the proof of the previous proposition, using additionally ‖vn‖∞ ≤
λ−1‖F‖∞, to show that supn EPi

y

∫ t

0
[ρ|vn|+2ρ|∇vn|+ρ|b||vn|](ωs)ds <∞. In fact, in this case the

proof is easier since none of the terms contains simultaneously b and ∇vn. Selecting k sufficiently

small, we can make Sn as small as needed. �

We now complete the proof of assertion (i′). Let us note that, for every k > 0,

EPi
y
[e−λtρvn(ωt)] → 0 as t→ ∞ uniformly in n.

Indeed, ‖vn‖∞ ≤ λ−1‖F‖∞, so |EPi
y
[e−λtρvn(ωt)]| ≤ λ−1e−λt, which yields the required. Com-

bining this result with Propositions 7 and 8, and taking into account that, by Theorem 5(iv),

{vn} converge uniformly as n→ ∞ to a continuous function v, we obtain from (16.4) upon taking

n→ ∞ and then taking k ↓ 0:

0 = v(y) + EPi
y

∫ ∞

0

e−λsF (ωs)ds, i = 1, 2.

Taking into account the continuity of F and ω, and invoking the uniqueness of Laplace transform,

we obtain that EP1
y
F (ωt) = EP2

y
F (ωt) for all F ∈ Cc, t > 0. We deduce from here that the one-

dimensional distributions of P1
y and P

2
y coincide. Since we are dealing with Markov families of

probability measures, we conclude that P1
y = P

2
y for every y ∈ R

d.

Proof of assertion (ii). The proof follows closely the proof of (i), but uses the gradient estimate

of Theorem 7(i) for q > (d− 2)∨ 2 chosen closely to (d− 2)∨ 2. In fact, this proof is easier since

we no longer need to take care of extra form-bounded vector fields g as in (i).
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Proof of assertion (ii′′). We modify the previous proof of (i′). By our assumption,

EPi
y

∫ ∞

0

e−λs|f |(ωs)ds ≤ C‖f‖ d
2−ε∧ 2

1−ε
, ∀f ∈ Cc, λ > λ0. (16.6)

The analogue of Proposition 7 is proved as follows. Clearly, hypothesis

(1 + |x|−2)−β |b|
d

2−ε1
∨ 2

1−ε1 ∈ L1, ε1 ∈]ε, 1[

implies that, for any k > 0, ρ|b|
d

2−ε1
∨ 2

1−ε1 ∈ L1. We have

|EPi
y

∫ t

0

[e−λsρ(b− bn) · ∇vn](ωs)ds| ≤ |EPi
y

∫ ∞

0

[e−λsρ(b− bn) · ∇vn](ωs)ds|

(we apply (16.6) using Fatou’s lemma)

≤ K‖ρ(b− bn) · ∇vn‖r r :=
d

2− ε
∧ 2

1− ε

≤ K‖ρ(b− bn)‖s′‖∇vn‖s,
1

s′
+

1

s
=

1

r
, (16.7)

where s′ = d
2−ε1 ∨ 2

1−ε1 and s = q∗d
d−2 , where q∗ was defined in assertion (ii′′) of Theorem 4 that

we are proving. Theorem 7(ii), which applies by our assumptions on δ, ν and q∗ in the end of

assertion (ii′′), and the Sobolev embedding theorem, yield

sup
n

‖∇vn‖ q∗d
d−2

<∞.

Therefore, the second multiple in the RHS of (16.7) is uniformly (in n) bounded.

In turn, for every fixed k, the first multiple in the RHS of (16.7) tends to zero as n → ∞.

Indeed, since 0 < ρ ≤ 1, we have

sup
n

‖ρs′bs′n ‖1 ≤ sup
n

‖ρbs′n ‖1 <∞,

where the finiteness is seen, after integrating by parts, from Eεnρ ≤ Cρ with constant C inde-

pendent of n (here we simply use the fact that the Friedrichs mollifier is a convolution with a

function having compact support) and our hypothesis ‖ρ|b|s′‖1 <∞. Now, we represent

‖ρ(b− bn)‖s′ = ‖1BR(0)(b− bn)‖s′ + ‖(1− 1BR(0))ρ(b− bn)‖s′

≤ ‖1BR(0)(b− bn)‖s′ + (1 + kR2)−β(s
′−1)(〈ρbs′〉+ 〈ρbs′n 〉).

The second term can be made as small as needed by selecting R sufficiently large (uniformly in n).

Then, for R thus fixed, the first term can be made as small as needed by selecting n sufficiently

large, since bn → b in Ls
′

loc by the properties of Friedrichs mollifier.

Arguing as above, we prove supn EPi
y

∫ t

0
[ρ|vn|+2ρ|∇vn|+ρ|bn||vn|](ωs)ds <∞, and hence have

the analogue of Proposition 8.

The rest of the proof of (ii′) repeats the proof of (i′).
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Appendix A. A desingularization theorem from [38]

Let X be a locally compact topological space, and µ a σ-finite Borel measure on X. In what

follows, Lr = Lr(X,µ) (1 ≤ r ≤ ∞). Let j > 1, put j′ := j
j−1 .

Let Λ be the generator of a strongly continuous semigroup e−tΛ on Lr for some r > 1, such

that for some constants c, j > 1, for all t > 0,

‖e−tΛ‖r→∞ ≤ ct−
j′
r . (S1)

We consider a family of weights ϕ = {ϕs}s>0 in X such that

0 ≤ ϕs,
1

ϕs
∈ L1

loc(X,µ) for all s > 0, (S2)

inf
s>0,x∈X

ϕs(x) ≥ c0 > 0. (S3)

Theorem 8. Assume that conditions (S1) - (S3) hold and there exists constant c1, independent of

s, such that, for all 0 < t ≤ s,

‖ϕse−tΛϕ−1
s f‖1 ≤ c1‖f‖1, f ∈ L1 ∩ L∞. (S4)

Then, for each t > 0, e−tΛ is an integral operator, and there is a constant C = C(j, c1, c0) such

that, up to change of e−tΛ(x, y) on a measure zero set, the weighted Nash initial estimate

|e−tΛ(x, y)| ≤ Ct−j
′
ϕt(y) (A.1)

is valid for µ a.e. x, y ∈ X.

For the sake of keeping the paper self-contained, we reproduce here the proof of Theorem 8

from [38].

Proof of Theorem 8. 1. We will use a weighted variant of the Coulhon-Raynaud extrapolation

theorem. Put

0 ≤ ψ ∈ L1 + L∞, ‖f‖p,√ψ := 〈|f |pψ〉1/p.

Let U t,θ be a two-parameter family of operators

U t,θf = U t,τU τ,θf, f ∈ L1 ∩ L∞, 0 ≤ θ < τ < t ≤ ∞.

If for some 1 ≤ p < q < r ≤ ∞, ν > 0

‖U t,θf‖p ≤M1‖f‖p,√ψ,
‖U t,θf‖r ≤M2(t− θ)−ν‖f‖q

for all (t, θ) and f ∈ L1 ∩ L∞, then

‖U t,θf‖r ≤M (t− θ)−ν/(1−β)‖f‖p,√ψ, (A.2)
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where β = r
q
q−p
r−p and M = 2ν/(1−β)

2

M1M
1/(1−β)
2 . Here is the proof of (A.2) for reader’s conve-

nience. Put tθ :=
t+θ
2 . We have

‖U t,θf‖r ≤M2(t− tθ)
−ν‖U tθ,θf‖q

≤M2(t− tθ)
−ν‖U tθ,θf‖βr ‖U tθ,θf‖1−βp

≤M2M
1−β
1 (t− tθ)

−ν‖U tθ,θf‖βr ‖f‖1−β
p,
√
ψ
,

and hence

(t− θ)ν/(1−β)‖U t,θf‖r/‖f‖p,√ψ ≤M2M
1−β
1 2ν/(1−β)

[

(t− θ)ν/(1−β)‖U tθ,θf‖r /‖f‖p,√ψ
]β
.

Setting R2T := supt−θ∈]0,T ]

[

(t − θ)ν/(1−β)‖U t,θf‖r/‖f‖p,√ψ
]

, we obtain from the last inequality

that R2T ≤M 1−β(RT )β. But RT ≤ R2T , and so R2T ≤M. This gives us (A.2).

2. We are in position to complete the proof of Theorem 8. By (S4) and (S3),

‖e−tΛh‖1 ≤ c−1
0 ‖ϕse−tΛϕ−1

s ϕsh‖1
≤ c−1

0 c1‖h‖1,√ϕs
, h ∈ L∞

com.

The latter, (S1) and the Coulhon-Raynaud extrapolation theorem with ψ := ϕs yield

‖e−tΛf‖∞ ≤Mt−j
′‖ϕsf‖1, 0 < t ≤ s, f ∈ L∞

c .

Note that (S1) verifies the assumptions of the Dunford-Pettis theorem, which yields that e−tΛ is

an integral operator. Therefore, taking s = t in the previous estimate, we obtain (A.1). �
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