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REMARKS ON PARABOLIC KOLMOGOROV OPERATOR

D.KINZEBULATOV, YU.A. SEMENOV

ABSTRACT. We obtain gradient estimates on solutions of parabolic Kolmogorov equation with
singular drift in a large class. Such estimates allow to construct a Feller evolution family, which
can be used to construct unique weak solutions to the corresponding stochastic differential
equation.

1. INTRODUCTION AND MAIN RESULTS

We obtain gradient estimates on solutions of parabolic Kolmogorov equation
(O — A+b(t,x) - V)u=0

under general assumptions on a vector field b : R1*4 — R? (d > 3). These estimates allow
to construct, using an analogue of the iteration procedure in [7], a Feller evolution family that
determines, for every € R? a unique in a large class weak solution to stochastic differential
equation

Xy =z — /t b(s, Xs)ds + V2B;. (1)
0

Here B; is a d-dimensional Brownian motion.
The class of vector fields in this note is defined as follows: we write b € Fs, if

b€ [Li (R

and there exists a constant 6 > 0 and a function g = gs of the form g = ¢’ + ¢” for some
0<g €LY (R),0<g" e L>®R), such that for a.e.t € R,

() ()5 < SIVF@OIIE + g@)ILf ()3 (2)
for all f € C°(R4*1). Here and everywhere below, | f(1)|13 = [za |f(t 2)|?dz, |[VF(1)||3 =
fra [V f (£, ) 2d.

The vector fields in class Fs, are called form-bounded. This class contains the well known
critical Ladyzhenskaya-Prodi-Serrin class, as well as vector fields that can have stronger singu-
larities, see examples in [3], 4].

The question of what values of constant ¢ are admissible is important, in particular, in light
of the following example. Consider Hardy-type drift b(x) = ﬁ%\x!‘% (which is in Fj5o by
Hardy’s inequality, but not in Fy , with any ¢’ < §). If Ve > dz—_dQ, then SDE (Il) with initial
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point = 0 does not have a weak solution. Informally, constant § measures the strength of the
singularities of b. In the example the attraction to the origin by the singularity of b is too strong.
On the other hand, by Theorem [ below, SDE (1) with b € Fs, has a unique in appropriate
class weak solution for every = € R? provided that § satisfies the assumptions of Theorem [l In
fact, it was proved in [5] that (Il) with an arbitrary b € F54, 6 < 4 has at least one martingale
solution for every initial point 2 € R?.

A vector field b € Fs 4 can be approximated by smooth bounded vector fields b,, that preserve
the form-bound § of b; the latter is crucial for what follows.

DEFINITION 1. A sequence {b,} C [L®(R'*?) N C>®(R"*9)]? of vector fields is called a regular-
izing sequence for b € Fs 4 if, for any 0 < t < o0,

(4) limy—o0 [|bn — bl[22(@) = 0, @ = [0,t] x K for every compact K C R

(ii) there are functions {g,} such that g, = ¢/, + ¢, g, € L*(R), ¢/ € L*>°(R) and

t
sup/ gn(T)dT < cs(|ld'l1 + t||g" |c) for some constant cs
0

(g7 and g/ are from the definition of “b € Fj,”).
(iii) Jo Iba(T) f(T)IBdT <8 [ IV F(T)3dr + fg gn(DIf(T)IBdT (0> 1, f € SER™*Y)).
(S(R'*9) denotes the L. Schwartz space of test functions).
The collection of all regularizing sequences for b € Fs 4 will be denoted by [b]".

In Section 2] we construct a regularizing sequence in [b]" for any given b € Fj .
Our first result concerns the classical solutions of Cauchy problems

(0r — A+ by(1,2) - Vo)u(r) =0, 0<s<7<oo, z€RY wuls)=ugeCRY. (3)
Theorem 1. Let b € Fs5 4. Assume that ¢ > d and § > 0 satisfy the following constraints:

qT\/S >0 ifd=34,

T2 ha-2) >0 fd=s

In particular, one can take
(a) Ifd=3, then V6 =8, g =d+ ; ifd=4, then V6 = 5, g =d +0.014.
(b) Ifd>5, then Vo =1%, ¢=d+1.

() Ifd > 5, then V3 = (1 — 1&)=L a= U g = d+ e, v €)0,1].

Let {by} € [b]" and let w = u,, be the classical solution to Cauchy problem (Bl). Then there are
constants C; = Ci(q,d, ) >0, i = 1,2 independent of n such that, for all 0 < s <t < oo,

t / " . d
sup [Vu(r)lg+Co [ [Vulr)[fdr < 0010 1 Tu()g, o=
s<7t<t s -
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Remarks. 1. Clearly, 1 < f(q) := (1 — ﬁ)g:—;% for all 0 < e < 1; supgejaa+1) f (@) = f(d).

2. In the assumptions of Theorem [I] we actually obtain a stronger regularity estimate:

s<t<t

t . d t

sup [Vu(r)lg + e [ NIVu( = ou(ldr + e > [ (9 Tulr), [Fun(r)[o2)dr
’ i=1"%

< 29I+ || T (s) 2.

The gradient estimates of the type established in Theorem [Il play an important role in study
of parabolic and stochastic equations. For example, similar estimates are used in [I] to study
stochastic transport and continuity equations (although under more restrictive assumptions on
b than the class Fs 4, see [6] in this regard).

Let Cux(R?) denote the space of continuous functions on R? vanishing at infinity, endowed
with the sup-norm.

Theorem 2. Let {b,} € [b]" C F54 with 6 and q > d satisfying the assumptions of Theorem [
Let uy, be the classical solution to Cauchy problem
(O —A+b,-Vu,(t) =0, 0<s<t<oo, up(s)=fecCHRY). 4)
For eachm =1,2,... and 0 < s <t < oo define operators UL* € B(Cy) by
UbSf o= uy,(t), Us® =1.
Then the limit
Ubs .= s—Coo(]Rd)—lirIln ULs  (uniformly in 0 < s <t <1)

evists and determines a Feller evolution family on M = {(t,s) € R | 0 < t — s} x Cxo(RY).

Remarks. 1. The limit u(t) = U%*f does not depend on the choice of concrete regularization
{bn} € [b]" (in this sense, the “approximation solution” u to Cauchy problem 0y — A+b-V =0,
u(s) = f is unique). Moreover, one can show that u = U"*f, f € Co, N L? is a weak solution of
Oy — A +b-V =0 in the usual sense, and that it satisfies the gradient estimates in Theorem [II
if f€CoponWhi,

2. Theorem [ can be extended to non-homogeneous parabolic equation with form-bounded
right-hand side, moreover, the corresponding gradient estimates can be localized, which, together
with Theorem [2, allows to prove the following result (see [3] for details).

Theorem 3. Let b € F5, with g > d close to d and 0 satisfying conditions of Theorem 1. Then
there exist probability measures P, v € R® on (C([0,T],R?),0(w, | 0 < r < 1)), where wy is the
coordinate process, satisfying

Eo[f(w)] = PO f(z), 0<r<T, feCuRY,

where P (b) := UT=4T="(b), b(t,x) = b(T — t, ), such that P, is a weak solution to SDE
t
X, — o — / b(s, X,)ds + V2B (5)
0

Moreover Py is unique in a large class of weak solutions (see [3]).
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The assertions of Theorem [l and Theorem 2] for ¢ > d close to d, but under more restrictive
assumption V8 < é, are contained in [2]. In this paper we improve these results and to some
extent simplify the corresponding proofs. In particular, in the proof of gradient estimates we
do not try to exclude the time derivative 0,u as was done in [2], but use it, thus needing less
restrictive assumptions on 4.

2. CONSTRUCTION OF A REGULARIZING SEQUENCE FOR A b € Fsq
Set Elf(1,2) = 27 f(1,2), ESf(1,2) = 5%« f(1, 1), E}*? = E1EY,
bn(7,2) := ELTY(1,b)(1,2),  Qn=1[0,n] x B4(0,n).

Select {e,} | 0 from the requirement lim,, [J ||[ELt(1¢,b)(1) — (1¢,b)(1)|3dT = 0.

En

Note that |E¢| < /E|¢|?, |E(¢Y)| < /E|p|>/E|¥|2. We have (for a.e. t > 0)
1EL 15,0mb(7,2)* < (€24, ) 1p, 0 [b(T,)?) < 8| Var/ EL, (2, )13 + 9(7)

r—|?
= 5#&%65"%(% V) +g(1) < O(d)e, ' 5 + g(7).

1
Thus |EZ (10, b) (7, 2)| < /C(d)den? + /EL g(1) an so |b,| € L®(R). It is clear that b,
are smooth.
Next, for f € S(R!*%) fo lonfll3 = fo llonfil|3, where fi(T,z) := 14 f(7,2), and
[ Ins13 < [ B Qo) ELURP) < [ (ot BFUAP)
<6 [IOVEURRIE + [ 9B (B 1)

<6 ["BLELIVIAIR + [ o (B )

<5 [ ELIVIAIE+ [ 9EL 115

[ ELINIAE = [ LomEL (Loa IVIAIIR)
= [ EL 010l VISR < [ 19513,

n t
/0 gEL £l < /0 (EL g)lIfI2.

t t t
[ et <8 [I9F13+ [ 0all 1B gulr) = ELg(r)

It is seen now that {b,} is regularizing sequence of b.

Therefore
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Remark 1. Let E! and E? denote K. Friedrichs mollifiers in one and in d variables, respectively.
We could define
by = EXT(1(0,10).

Then, arguing as above, one easily concludes that {b,} is regularizing sequence for b.

3. Proor or THEOREM [II

Proof. Denote w = Vyu(r,z), ¢ == =V - (ww|92) = — "L, Vi(w;|w|?2). Since b, is smooth
and bounded, we can multiply the equation by ¢ and integrate by parts to obtain

¢ Ocwllf + Iy + (g = 2)Jg = X, (6)
where

d
lyi= 3 (Tl ol = (Tl o), X = Re(by - w, V- (wfult).
i=1

1. Case d = 3, d = 4. Clearly, X, = Re(b,, - w, |w|97?Au) + (¢ — 2)Re(b,, - w, |w|7 3w - V|w]),
Re(by, - w, |w|? 2 Au) = Re(b,, - w, |w|?2(dru + by, - w))

= B, + Re(b, - w, |w|?* 20,u)

= B, + Re{(—0yuu + Au), |w|920,u)

= By — (|0-ul*, [w|?) — ¢ 0; |w]|? — (¢ — 2)Re(|w|" w - V]w|, 0ru)
Re(by - w, [w]™? Au) < By — (|0-ul*, [w|™?) — ¢ 10, w|| + (¢ — 2)J3 (10,ul’, Juwl?2)’

—92)2
< g0, )t + B, + =2

Jq
2)2]

2
_ g0 (q—
< —q o |Jw|| + [T + =27

=+ g g

11 1
o 0, ot~ V| < BFF < |18, + =4
1 ¢%5 gn(T)
< =2 q
= {4&7 e ]Jq+ 2e Il
q_\/g + 9n(T) [|lwl|2 (e = M)
2 7 g 4
Thus
1 ¢*5 | (¢—2) q\/g] q—2
< - q - i - I R— q
X, < = ol + |52+ 2 4 -5 g+ (22 Dol
and hence
2 0 (q—2)? q\/S} (q—2 )
Z q ]l _ =7 _ —_Nn1 - < ([ Z—= q.
ol + o1 - G- SR - 2T < (L2 1)l
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Set jir i= &(42 + 1) [T gn(r)dr, so

qVe
2., _ 25 —2)? Vel
2o (e uwr)8) + fg—1- L0 - W= VO ey <o ()
q 4 4 2
It is readily seen that
2 2
q*6  (¢—2) qV's
q—1 1 1 (g —2) 5 > 0

holds in the assumption (a) for d = 3,4.
Finally, using the uniform Sobolev inequality and the bound f; g, < cs(||¢|l1 + tl|g” [|oo), We
obtain from (x)

¢
C ! 11 o
suptHw(r)Hg +c1/ Hw(T)ngdT < eCallg'lli+tlg"l )HVu(s)Hg,
S

s<r<

Here we have used that Usl5u(s) = e(5179)8y(s)— [51 U1 Th,-VeT=9)8(s)dr and, for s;—7 < 1,

81,T Cn 5i 81,T T—S
VU gy € 2 19 [ 027, D=2 u(a)drly < 2 oo/51 =5V

50 that limg, | [ VU *u(s)|lq = limg, s [|Ve®179%u(s) |y = [[Vu(s)llq-

2. Case d > 5. Now we estimate the term X := Re(by, - w, [w|?"?Au) as follows.

X, = Re(=0,u + Au, lw|72 Au)
= (JAul, [w|?"?) — Re(0ru, [w]?™*Au),

-2
X, = Re(by - w, [w|!™*(0ru + by - w))
= B, + Re(by, - w, |w|T20,u).
Thus,

(|Aul?, |w|72) = B, + Re(0,u, [w|12(by, - w + Au))
= B, + Re(0-u, |w|7?(—0,u + 2Au))
= B, — (|0-ul?, |[w|?T™2) + 2Re(0ru, |w|?2 Au)

2
= By — (|0rul?, [w]™?) — 55THWHZ —2(q — 2)Re(0ru, [w] " w - V]wl)

_ 2 _
< By — (|0ruf?, [w]T7) — 7 Orlellg + (g = 2)*Jg + (|0-ul?, [w|"~?)

2
= By = 2 0xllwllg + (g - 2)%Jq;
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_o 1 2 _ 1
Xg < (|Auf, wl*%)2 Bf < e(|Auf®, [w|"?) + B,

2

< —=oruly+ ( )B +(q—2)%J,

<oty + (Tes L0422 )apt (e )l

- q 4 4e 4 ? 4e 7

1
—32
(herewepute—ﬂ<—+( 2)) )
4 4
2e o |q 1

=20l + LV + (g =22 Jy+ e+ 1 )n(
Note that X, = X + X!/, X!/ = (¢ — 2)Re(by, - w, |w|? 3w - V|wl|). Estimating X! as in Step 1,
X) <(q— )<qu + I Hqu) we have

2e Q\/_ q%0 > ( 1 q—2)
X, < — 20, ||| + 0 4 (g—2 _9 =2, .
ool B2 (I =22 g =2) gyt (e g 2 gl
Finally,
1+2 q%0
ol + |a- 1———( -2 +a-2)]
< (et 3o+ 275 Joun
We are left to show that
qg—1-— T\[< qj+(q—2)2—|—q—2)>0. (")
assuming that d > 5, V3§ < (1 — 16‘1(})3%;%, a= {5, 0= EZ ;;i, qg=d+e, Ve €]0,1].
Set V6 = (1 — = ;;, 0 < p < 1. Then (¥) will follow from
q—1 q—1 > (—1)*1
S RS Sy I iy | VRN SRS AT —.
q A=p)—=>0-n=— \/+4(q_2)2( 1) PR

The latter is equivalent to

—1)2

which clearly follows from 164 > (1 — p) Eg:gi. In turn the latter is equivalent to

a (¢—1)°
> = =
F=T6+a "~ (-2

Finally, with y = 5% it is seen that I<1- p)i=21 forg=d+ecandall 0 <e<1.
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3. Let d >3, V0 = q = d+ 1. It is seen that (¥') is equivalent to d > 1. Note that ()
fallslfq>d+1andf . O

Remarks. (') still holds for =142 —,/(1+5)2 -1 (< T67a)-

4. PROOF OF THEOREM

Claim 1. Let u, be the classical solution of (Bl). Then, for every r 6]2_2\/5,00[, {un} is a
Cauchy sequence in L ([s,t], L" (R%)).

Proof. Below we allow ¢ < 4, so we do not use the gradient bounds of Theorem [[l Without loss
of generality we will suppose that f = Ref, and so u,, is real, and that r is a rational number
(so u"~1 is well defined even if u,, is sign changing).

(a). Let k > 2. Define

0, ift <k,
n(t) =4 (L—1)" ifk<t<2k, and ¢(z) = (222, R > 0.
1, if 2k < t,

Note that V(| < R~ 11V<¢1 . Here 1y, denotes the indicator of the support of |V(].
Set v := Cuy (7). Clearly,

(C(Dy — A+ by - Vup(7),0" 1) =0,

(O — A +by, - Vv, 0" 1) = (A, (=up + upby, - VC,UT_1>, (%)
where
(A, ¢]—tp, 0"y = %(Vm U0 IVE) — (V¢ 0™ V)
2, =V 2,V( r s V(2
= Z(von, ) - 2 tve) (KL o
2(r — 2 2V V(|2
= 202D 008,05 28y 4 (5L oy
By the quadratic estimates
r—1 VC T
<unbn 'VC,'U >: <bn va >
mf rio TV IVCI 1gn(T)
Vv
——[|Voz |5+ u< o) + v [olly (k> 0),
20r=2) o x V¢, _ uxf rie (r=2)% VP
TV i) < BRIV 4 e St o),

we get from (%)

r— 2 7,2 2
ontolf+2(5 — o4 vB) 190 < (C2 4 D0 ) iy g o
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Recalling that 2 > /8, we can find p > 0 such that 2 — (14 p)v/§ > 0. Thus

4(r —2)% + 126 |V§|2 T4
Or|lvl; < <— + > n 4 *k
[[v]] G ( Jol™) + 79 (T)llv] (%%)
. 20d
Next, (192, o]") < R2|[1oc¢ ol |1, 6 := kL. Since [ualloc < [1floer [1vcll; < c(d. 6)R*,
and

11ve¢™ ol lIx < Ntveur’ | g 0l < [1vell g llun 2012,

we obtain, using the Young inequality, the Cru(nal estimate (on which the whole proof rests)
!VC ? 20 SE"
(o) < —le(d)] 7 RF||fII%

Fix 0 by 0 < 6 < 755 Now from (**) we obtain the inequality

Oroll; < M(r.d, )R F|l5 + N(r,d.8)[oll7, v=5 —d >0, (% %)

from which we conclude that, for a given & > 0 there is R such that sup.¢(s ., [|Cun (7 < %,
and so

sup  [[(1Beo,2xr)) (Un(T) — um(7))|lr <&
TE[s,t], n,m>1

(b). Let k > 2. Define

1, if t < 2k,
n(t) =3 (1—L@t—2k)", if2k<t<3k, and((z):=nld), R>0.
0, if 3k < t,

Set h := uy, — uy. Clearly, for r rational and v = (h(7),
((Orh — AR 4 by, - VRh), (o™ = F,

Orlvlly +4() M| V|3 + 2(bv?, Vi) < rF, 1 =
where
F= <[_A’ <]_h’UT—1> + <(bn - bm) : vuTh <UT_1> < VC hvr_1>7
V¢

<[_A7<]—h7 T—1>_ r <VU%7U% C >+< C2 , U >7
T r'v 2 1
(908,05 ) < vt g 5 iy,

<bm-v<,hv’“-1>=<bmv§'%,v%s||bmv%u2<’ E oy,

b o2 (13 < 61 VU213 + gallv]l;-
Using these estimates and fixing € > 0 by 2r/~! — (1 4 €)v/§ > 0, we have

r -1 _ \/_ 112 (7"—2)2 r | C|2 r
oIl + 220 = (14 QVBIToEIE < (2 + L +) (S5l + (e+ Dgaloll + .

1 r—1) L
F1 = (Clbn = b [*) 2 (V[ [0 1) 2.
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Again using the estimate <‘%§|—2|v|’"> < MR7||f||% + N|v|-, v > 0, and setting pu, = NCT +

e+2) [T gn(s)ds, where C = C(r,d :M+L+r, we obtain that
( )fs () er 4de

t t
@) < o)l + MORTNf, [ e #mdr+ [ e Fy(rydr,

s

t
o)l < MCR™||flleet + e [ Fy(r)dr.

! ! 2 20 2 2 1
[ B < ([ €len=buPrar) " ([ €uPrar)
We estimate [(¢|Vu,|?)dr as follows. Note that (9, u, — Auy, + by - Vg, Cup) = 0, and so
1
50 (Cun) + (| Vunf?) + (Vun, unVE) + {by - Vun, Cun) = 0,

V¢l
¢

Or (Cun) + (¢ [Vun|?) < 2(( )+ (LoD 156

¢ 2 2 (VC)z ¢ 2 2
[ €vunyar < 11+ (20525 + [ rar )11
< 113 + LRI 12
Thus, we arrived at

lo(®)[l; < MCR™| f|5oett
t
(1l + ELR) | lloo) 11155 et Vi /0 (C[br — b ).

By the definition of by, limy, m, fi(C|by — bm|?)dr = 0, and hence for given é > 0 and R < oo
there is a number P < oo such that

sup  [[1B(o.2kR) (Un(T) — um(7))[lr <E.
T€E[s,t],n,m>P

The proof of Theorem [2] follows from the next claim.
Claim 2. {u,} is a Cauchy sequence in Lo .

Here by Ly, = L,.([s,t] x R?) we denote the Banach space of real functions on [s,#] x R?
having finite norm

t 1
[Vllp,r = (/ [o(D)7d7)?, Nvlloco := sup [[0(7)lloo-

S TE[SJ}
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Proof. 1. Again, first we allow ¢ < 4. Note that h(7) = u,(7) — u,(7) satisfies the identity
d
(5= = Atbu - V)h = (b = bm) - Vitn,  h(s) = 0.

Multiplying the identity by h|h|"=2, r > 2_2 75 and integrating by parts, we obtain

1 4 2
~0- 013 + V03 + ~Re{by - Vo,u) = Re((by — bn) - Vean, oo,

r/
where v = hlh| =, Now, using the quadratic estimates and the definition of class Fs 4, we have
[(bm - Vv, 0)| < ellbmvll3 + (4)7H|Voll3

< (e6 + (4e) DIVl + ega ()0l

= V8[| Voll3 + 2V8) ga(n)llvl3 (e = (2V8)!, n>m)
and

(B = bun) - Vi, ool 5)] < {(Jb] + [bmDle] o]~ [Vuan)
< 00| Vol3 + 07 o' Vun |3 + ngn(m)llo] - (1> 0),

and hence obtain the inequality

1 4 2
S0rol + (= — 2v5 - 8 Vol

rr!

— _2 —
<Ml Va3 4 ((rv8) ™+ m)ga () [0]3-

Since r > 2_2\/5 & % — /6 > 0, we can choose k > 2 so large that
4 2 2,2
LS =(2 Ve =k
rrlr ror!
Fix n by
4 2 —k+1 —k+1
775:—/——\/3—7* (=r ).
rr’r
Thus

—k
Or||vl|3 + =" Voll3

_ _2 _1 1 —
< SrE [0 F Vun |3 + (072 + 672 g, (1) ||v]13

So, multiplying this inequality by e ™#7, p, := ((5—% + 671 [T gn(s)ds, integrating over [s, t], and
then using the inequality

= (672 46 Nes(lg' Il + g lloo)

=I

Hr <

we obtain
k[t o [f 2
sup o(r)| + 17 [ I9o(Idr < rte [ ol =) Vun(r) B

s<7<t
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From the last inequality we obtain, using uniform Sobolev inequality cngvH%j < [|[Vv|j3 and
Hoélder’s inequality:

cart sup [o(IE+ [ I1Vo1Bydr < carei [ [1o]'~Eunlar

s<t<t
- T
< cdr%e‘“/ HVunH%val_%H%x,dT, x>1, 2= .
s r—1
2. Now let d, 6 and ¢ > d satisfy the assumptions of Theorem [Il Thus
sup [|Vu(r)|z < 20 I+ 7y o)) |7,
s<7<t
Selecting x := £ and putting C3 = 267 es + 2CH¢™ 1, we obtain
k E_Cs(|lg’
car ||h||7c;o,r+||h||rr] §Cd7"2 e 3(llg’ll1+tllg”) |VU ||2/ ||h||T/(T 2
Set D := cdec?’(”g/”l“”g")HVU(S)Hg. Then the last inequalities take form
k 1 k
car™hlloor + | Bllyrj < D7 (r7)? HhHr 52 (r—2)" (%)

Let us use first Holder and then Young inequalities:

Wl e e < 1R 1R < Bllbll - + (1= Bk, 0<B<1.

T‘T‘j

Therefore, we obtain from (x) the inequalities

1
1Bl = < DT(ET)*|A],C

= /J"d 5755 r— 2m (r—2)°

Let d > 5,0 =d ! and ¢ = d+ 1. Define 8 = —2—,31 d—2CE|—2,8 and t = 4. Thent:ﬁ.
In other cases we select 8 €]0,q — d] such that t = ﬁ Thus,

1

Bl jur < D32 1)L 3./ (r_2)"

Fix rg > \[ Successively setting z'(r1 — 2) = rg, 2/(ry — 2) = jir1, 2'(r3 — 2) = jira, ..., 80
that

-1 To —170
we obtain from the last inequality that

ll v < DOTllBIlY
xr
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o (mn) R (o) e ) ) 5)
() (5) - ()

_ 2k
[rrnlrrnl(l—%"nl)r S(1=2rt y(1—2r;t) Tr11(1—2r21)...(1—2rn1)]

where

n n—1 n—2 A |

Since a,, = (" — 1)r; 1 (t — 1)1 and ~,, = rot"(2'r,) !

9

—1 . . —1
an§a5<r—?+2 TO) :J—l(t—1—|—2‘7—1) :
x J1 To To

2t | _
inf’yn>’y:—(r—0+—) 1>0, sup v, < 1.
n ' a! t—1 n

and

Also, since

1 —1 1
I tr,
=T Tpl1Tn-2

5 1 tn71 —1
n
and bt" < r, < at", where a = r1(t — 1)7!, b = r1t~1, we have

5 —
ry Tn

T < (")) (qer 1) D (qgy®0?

1
— | gt tz it } < [a(t—l)ltt(t—1)2

Finally, note that ||A||;», — 0 as n,m 1 oo, and so HhHV” o <(t— s)To(l‘ DR, . for all large
n,m.

Deﬁney(T):Tﬁ if0<7'§1and7'roT1*1> it > 1.

Therefore, we conclude that there are constants B < oo and v > 0 such that the following
inequality is valid

illos,oo < B(t = )|l s Bt —s) = Bu(t — 5)e* 9",

It remains to note that [|A[|ro (s qxre) — 0 uniformly in s € [0,¢] according to Claim [Il O
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