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weP AND C% REGULARITY OF SOLUTIONS TO (u—A+b-V)u=f WITH
FORM-BOUNDED VECTOR FIELDS

DAMIR KINZEBULATOV

ABSTRACT. We consider the operator —A 4 b -V with b : R — R? (d > 3) in the class of form-
bounded vector fields (containing vector fields having critical-order singularities), and characterize
quantitative dependence of the WH%’Z’ (2 < p < q) and the C%7 regularity of solutions to the
corresponding elliptic equation in L? on the value of the form-bound of b.

Let d > 3. Consider the formal differential expression
—A+b-V, b:RY—RY (1)

with b in the class of form-bounded vector fields Fs, § > 0, i.e.|b| € L2 = L2 _(R? £%) and there

loc loc

exists a constant A = As > 0 such that
1
1BI(A = A)72[|250 < V5

(see examples below). It has been established in [KS] that if § < 1, then for every p € [2,2/v/] (@)
has an operator realization A,(b) on LP as the generator of a positivity preserving, L contraction,

d
quasi contraction C semigroup e **»() such that D(A,(b)) € WhPN W Moreover, there exist
constants p1 = p1(d,p,8) > 0 and K; = K;(d,p,8) > 0, i = 1,2, such that u := (u + A,(b))71f,
f € LP satisfies for all p >

1 p, 2 1_1
IVull, < Ki(p—p1)" 21 fllp, IV Vul2 |5 < Kol — p1)? 2| £

In particular, if 6 < 1 A (ﬁf7 there exists p > 2V (d — 2) such that u € C%7, vy =1 — %.

The next theorem improves on the regularity of « under the same constraints on 9:

Theorem 1 (Main result). Let d > 3. Assume that b € Fs, § < 1. Then for every p € [2, %[ the
formal differential expression —A +b -V has an operator realization A,(b) on LP as the generator
of a positivity preserving, L™ contraction, quasi contraction Cy semigroup e **®) such that:

(i) The resolvent admits the representation

-1
(M_‘_Ap(b)) = Q(va)v > o,
for a po = po(d,p,d) > 0, where

O(u, ) = (n — A)_l — Qp(1+ Tp)_lcpv
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1_1
2 ([ Tpllpsp < sp < 1,

141
the operators Qp, Gp, T, € B(LP), [|Gyllp—p < Cru™ 277, [|@Qpllp—sp < Cops
1 1
where ¢sp = (%5 + 1%2\/3)5(]9 —1-(p-— 1)1%2\/5 — p—(p4_2)5)_5,
G, i=br - V(n— AL, br o= [b|r b,
and Qp, Ty are the extensions by continuity of densely defined (on £ :=J,- e_e‘b‘Lp) operators
_2 2 _ _2
Qp 1 E:=(u—A)"o|" "%, T, E:=bv-V(u—A)""p|" 5.
(i) For each 2 <r <p<q<oo and u > pg, define
Gplr) = br - V(= A)27r € BLP),  Qpla):= (u—A)"2 b5 oné.
The extension of Q,(q) by continuity we denote again by Qp(q). Then Qp,(q) € B(LP) and

Op(i1.b) = (1 — D)™ — (1= A) 271 Qup(@) (1 + T) ' Golr)( — A) T > g,
Thus,

(1 + Dpl®) " € BOWTI R, W) (*)

(WP s the Bessel potential space).

(iit) By (i) and (ii), D(A,(b)) C Wit (¢ > p). In particular, by the Sobolev Embedding
Theorem, ford > 4, if § < (dT22)2 then there exists p > d—2 such that D(Ay(b)) C C%7, v < 1—%,
(For d = 3 the corresponding inclusion can be improved, see remarks below.)

(iv) e theln) 5 o=t () strongly in LP  locally uniformly in t > 0,

where by, == e (1,b), €, L 0, n > 1, 1, is the indicator of {x € R | |z| < n,|b(z)| < n}, and
Ap(bn) == =A+ b, -V, D(Ay(by)) = W?P.

REMARKS. 1. For d = 3, by the Miyadera Perturbation Theorem, the assumption b € Fg, § < 1
implies that —A(b) = A —b-V of domain W?2?2 is the generator of a Cy semigroup in L?, and hence,
for p1 > Ad, (1 + Aa(b))~! : L2 — WC. In particular, D(A2(b)) C C%7 with v = 1.

2. The class F contains a sub-critical class [L%+L>]? (with arbitrarily small form-bound 4) as well
as vector fields having critical-order singularities, e.g. in the weak L? class or the Campanato-Morrey
class etc. See e.g. [KiS| sect. 4].

3. We say that b : R? — R? belongs to F(ls/ ?, the class of weakly form-bounded vector fields, and
write b € Fy/?, if [b] € Ll _ and there exists A = \; > 0 such that

1 1
1167 (A = )% l252 < V5.
In [Ki, Theorem 1.3], |[KiS| Theorem 4.3|, we have constructed an operator realization A,(b) of
~A+b-V,beF mys <1, mg:= ﬂ%(2e)_%d%(d - 1)_% as the generator of a positivity

preserving, L> contraction, holomorphic semigroup on L, p €|p_, p4[, px := ﬁ, such that
foralll1<r<p<yq

(CHAp0) " € BOV I W) (1)

(cf. @)). In particular, if mg0 < 4(51_;12)2, then there exists a p > d — 1 such that D(A,(b)) C C7,

d—1



WP AND C9%Y REGULARITY OF SOLUTIONS TO (u—A+b-V)u=f 3

(Despite the inclusion Fg2 C F(ls/ ?, see [KiS| sect. 4], these two classes should be viewed as essen-
tially incomparable, for the corresponding regularity results hold under different assumptions on the
value of §.)

The proof of Theorem [Tl follows the Hille-Trotter approach of [Ki|, [KiS|. However, the proof of
the crucial estimates in Proposition [l below is based on [KS].

4. For |b] € L%, one can extract additional information about the regularity of D(A,(b)) arguing
as in remark 4 in [KiS| sect. 4.4].

5. Let Co = {f € C(R?) : limy o f(x) = 0} (with the sup-norm). Theorem [I allows to
construct the generator Ag_ (b) of an associated with —A +b-V, b € Fs, § < 1 A (%)2 Feller
semigroup as (1 + Ao (b)) 7! := (0,(p,b) | LP N Coo)g::_)cw, p > 2V (d—2), by repeating [KiS|
proof of Theorem 4.4] (for —A +b-V, b € Fy/*). Thus, we restore the result of [KS, Theorem 2|.
This proof doesn’t require the Moser-type iteration procedure LP — L of [KS].

6. The proof of Theorem [ extends directly to the operator studied in [KiS2]:

d d

~V-a-V+b- V== Via;@)V;+ > be(x)Vi, beF,,
i,7=1 k=1

with

a=1+cfaf where ¢> -1, fe[L®N Wl’z]d, Ifllco =1,

loc

d
Vif €Fpi, i=1,2,...,d, 77:277’

i=1
for all p > 2, ¢, n and § satisfying the assumptions of [KiS2l Theorem 2|. (More generally, with
d
a=TI+Y2 cfp@fy, fre [LnWi2]" [fillee = 1 such that Yo, e > —1, 3, _gcr < 00 and
Vife € Fn}i’ i=1,2,...,d, for appropriate 1} > 0.)

Acknowledgements. [ would like to express my gratitude to Yu. A. Semenov for helpful discussions.

1. PrRoor or THEOREM [I]

The following proposition is a new element in the Hille-Trotter approach of [Ki], [KiS].

Proposition 1. (j) Set G, = bo V(-2 Qp=(un— A)_1|b|1_%, b= bo -V(p— A)_1|b|1_%.
Qp, Tp are densely defined (on &) operators. Then there exists po = po(d,p,0) > 0 such that

141 _1_1
1Gpllp—p < Crt 2", 1Qpllp—p < Cop 277, ([ Tyllp—p < cs5p < 1, K> o,
1
where ¢sp = (gc? + p_g?\/S) ’ <p —1-(p-— 1)’%2\/5 - p—(p4_2)5>
(jj) Set Gp(r) = b -V(p— A)_%_%, Qplg) = (1 — A)_%+%]bll_%, where 2 < r <p < q < .
Qp(q) is a densely defined (on &) operator. Then for > o

||Gp(7”)||p—>p < Kip, ||Qp(‘J)Hp—>p < Kogq.

The extension of Qp(q) by continuity we denote again by Qp(q).
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Proof. In what follows, we use notation

(h) = /R h@)dL?, () = (hg).

It suffices to consider the case p > 2.

() (a) Set u:= (u — A)_llbll_%f, 0 < feLP. Then

2
T 1) = (o7 Vulll = (b [Vul?)
= Bl(A = )72 = A)2|VulE|3 (A=)

_1 1 P

< IBIA = A) 72 301l (N — A)2 [Vl 2|3

1 » P
= 3(A = A)2|Vul 2|5 = S(AIVullp + V| Vul[3).

It remains to prove the principal inequality
SAIVullp + VIVl 3) < & I I, ()

and conclude that [|T}||p—p < c5p-

First, we prove an a priori variant of (&), i.e.for u = (p — A)_l\b\l_%f with b = b,,. Since our
assumptions on ¢ involve only strict inequalities, we may assume, upon selecting appropriate &, | 0,
that b, € Fy with the same A\ = A5 for all n.

Set

d
w = Z (Vew)|wlP™?), Jg o= (V]w])?|wl"~?).

We multiply (1 — A)u = ]b[l_Ef by ¢ := —V - (w|w[P~2) and integrate by parts to obtain

wllwl2 + I, + (p— 2, = (b7 £, —V - (wlwl?~2)), 2)
where
("5 £, =V - (wlw[?"2)) = (b7 £, (- Aw)w]?~? = (p — 2)[wPw - V]uw])
(use the equation — Au = —puu + [b|*"7 f)
= ("5 £, (—pu+ B2 ) [wlP2) — (p = 2)(b 75wl - V).
We have

D (W (—pl?) <0, :
2) [{|b]'"% £, lw]P~3w - V]w])| < ad, + =N, (a>0), where N, := (65 £, B flw]P2),
so, the RHS of @) < (p —2)aJ, + (1 + p(f)Np, where, in turn,

Ny < (B2Jwl) 7 (f7)7

- 2
< —<|b|2|w|p> + —||f||£ (use b € Fs & [|bpl3 < 8][Vel3 + Adllel3, ¢ € WH?)

2 2
e — ( w+mwwﬁ+—ww
p p
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Thus, applying I, > J, in the LHS of (), we obtain

(o) lulg+ [p=1-p-2) (o + 1. 22 26) 22 Z2a] S oot < (14 222) 21

where ¢y = 1%2)\5(1 + ”4—;2). It is now clear that one can find a sufficiently large po = po(d, p,d) > 0
so that, for all u > po, (#) (with b = b,,) holds with

2 1—1—1”—2)2

P ( o

cg’p_54p_1_(p_2)< + 4 lp(P 2)5)_1’(174—2)5 (WeseleCta_él\/g)
55+ 552V0

p—l—( _1)17 2\/_ P(p2

as claimed. Finally, we pass to the limit n — oo using Fatou’s Lemma. The proof of (&) is completed.

REMARK 1. It is seen that /8 < % = csp < 1. We also note that the above choice of « is the best
possible.

(b) Set u = (u— A)~1f, 0 < f € LP. Then
2
IGp Iy = lor - Vullp
(we argue as in (a))
< S(AIVully + [ VIVul?]3),

where, clearly, ||Vullb < 2| f|[5. In turn, arguing as in (a), we arrive at pu|wl|? +1I,+(p—2)J, =
(f,=V (wlwP=?) (w = Vu),

pllwllp + (0 = D Jp < (F2, [wfP~2) + (p = 2)(f, [wl"w - V]wl)),

L), e>o.

pllwllp+ (p = D Jp < (F2 [0l ) + (p = 2) (e + = 1

Selecting ¢ sufficiently small, we obtain
—2)| £12
Jp < Collwllg= 1 f1I5-

Now, applving [[ully < 4l we astive at [VIVal¥|3 < Ou 5[ Hence, Gyl <
Cou™ 37| Il for all > po.

(c) Set u = (u— A)_1|b|l_%f (= Qpf), 0 < f e LP. Then, multiplying (1 — A)u = |b|1_%f by

1

uP~", we obtain

4p—1),o 2 -2, o
plfully + pe IVuz||3 = (o] "7 f,u?™"),

where we estimate the RHS using Young’s inequality:

p2

_2 2p_ 2 22
(o'~ P b, fud) < ev's 2p2p (i) + L2 (i) >0
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Using b € Fs and selecting £ > 0 sufficiently small, we obtain that for any g1 > 0 there exists C' > 0
such that

2

2p p7
(= p)[lullh < C(fP2urt?),  p> .

Therefore, (j1—pur)[[ully < C{f7) 742 (wP) 72, so [lull, < Cau™ 27|, The proof of (j) is completed.

(77) Below we use the following formula: For every 0 < o < 1, pu > 0,

sin Ta

(p—A)"*= /OOO 7t 4 — A) Lt

™

We have
14192
1Qp(D) fllp < Nl(w—A)" 2742 [f]ll,
R SR 1y 1-2
< kq ; t 2 al|(t 4+ p— A)T b fllpdt
(we use (c))
1.1 _1_1
< kq02/0 t 2+q(t+:u) 2 rdt HfHP:K2,quHP7 feég,

where, clearly, K3, < oo due to ¢ > p.

It suffices to consider the case r > 2. We have
0 2
G )1y < b [ HH bR (e = A)7
(we use (b))
1 141
<kCy |tz +p) 2Trdt | fllp = Kl fllp,  fEE,
0

where, clearly, K7, < oo due to r < p.
The proof of (jj) is completed. O

REMARK 2. Proposition [lis valid for b,, n = 1,2,..., with the same constants.
Proposition 2. The operator-valued function Op(u,by) is a pseudo-resolvent on p > pg, i.e.
O bn) = Op(v,bn) = (v = 1)Op(1, bn)Op(v,bn), 1, v > pio.
Proof. The proof repeats [Kil proof of Prop.2.4]. O
Proposition 3. For everyn =1,2,...,
1Oy (1,by) — 1 strongly in LP as 1 oo (uniformly in n).
Proof. The proof repeats [Kil proof of Prop.2.5(ii)]. O

Proposition 4. We have {p : p > po} C p(=Ap(br)), the resolvent set of —A,(by). The operator-
valued function Op(u,by) is the resolvent of —A,(by):

@p(,ua bn) = (N + Ap(bn))_la > -

Proof. The proof repeats [Ki, proof of Prop. 2.6]. O
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Proposition 5. We have, for alln=1,2,...,

_ Ad
1+ ApOn))llpsp < (0 —po) ™", > po = po V PYAREETR

Proof. By [KS| Theorem 1]. O
Proposition 6. For every u > po,

Op (1, bn) = Op(p,b) strongly in LP.
Proof. The proof repeats [Ki, proof of Prop. 2.8|. O

Now, by the Trotter Approximation Theorem [Ka, 1X.2.5], ©,(u,b) = (1 + Ay(b))™1, 1 > po,
where A, (b) is the generator of a quasi contraction Cy semigroup in LP. (3) follows. (iz) follows from
Proposition [Ii(jj). (it) = (4ii). (iv) is Proposition [l The proof of Theorem [lis completed.
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