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W 1,p REGULARITY OF SOLUTIONS TO KOLMOGOROV EQUATION AND

ASSOCIATED FELLER SEMIGROUP

D.KINZEBULATOV AND YU.A. SEMËNOV

Abstract. In Rd, d ≥ 3, consider the divergence and the non-divergence form operators

−∇ · a · ∇+ b · ∇, (i)

− a · ∇
2 + b · ∇, (ii)

where a = I + cf ⊗ f, the vector fields ∇if (i = 1, 2, . . . , d) and b are form-bounded (this includes the

sub-critical class [Ld +L∞]d as well as vector fields having critical-order singularities). We characterize

quantitative dependence on c and the values of the form-bounds of the Lq
→ W 1,qd/(d−2) regularity of

the resolvents of the operator realizations of (i), (ii) in Lq , q ≥ 2 ∨ (d − 2) as (minus) generators of

positivity preserving L∞ contraction C0 semigroups. The latter allows to run an iteration procedure

Lp → L∞ that yields associated with (i), (ii) Lq-strong Feller semigroups.

1. Consider in Rd, d ≥ 3, the formal differential operator

−∇ · a · ∇+ b · ∇ ≡ −
d

∑

i,j=1

∇i aij(x)∇j +
d

∑

j=1

bj(x)∇j , (1)

where
a = a∗ : Rd → Rd ⊗ Rd is Ld measurable,

σI ≤ a(x) ≤ ξI for Ld a.e. x ∈ Rd for some 0 < σ ≤ ξ < ∞.
(Hu)

By the De Giorgi-Nash theory, the solution u ∈ W 1,2(Rd) to the corresponding elliptic equation (µ −
∇ · a · ∇+ b · ∇)u = f , µ > 0, f ∈ Lp ∩L2, p ∈]d2 ,∞[, is in C0,γ , where the Hölder continuity exponent

γ ∈]0, 1[ depends only on d and σ, ξ, provided that b : Rd → Rd is in the Nash class (⊃ [Lp + L∞]d,

p > d) [S], but already the class [Ld + L∞]d is not admissible (e.g. it is easy to find b ∈ [Ld + L∞]d

that makes the two-sided Gaussian bounds on the fundamental solution of (1) invalid). On the other

hand, for −∆+ b · ∇, the C0,γ regularity of solutions to the corresponding elliptic equations is known

to hold for b having much stronger singularities. Recall that a vector field b : Rd → Rd is in the class

of form-bounded vector fields Fδ ≡ Fδ(−∆), δ > 0 if |b| ∈ L2
loc ≡ L2

loc(R
d) and there exist a constant

λ = λδ > 0 such that

‖|b|(λ −∆)−
1
2‖2→2 6

√
δ.

(The class Fδ contains [Ld + L∞]d with δ arbitrarily small, as follows by the Sobolev Embedding

Theorem, as well as vector fields having critical-order singularities such as b(x) = d−2
2

√
δ|x|−2x (by

Hardy’s inequality) or, more generally, vector fields in [Ld,∞ + L∞]d, the Campanato-Morrey class or

the Chang-Wilson-T.Wolff class, with δ depending on the norm of the vector field in these classes, see
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e.g. [KiS] for details.) It has been established in [KS] that if b ∈ Fδ, δ < 1, then for every q ∈ [2, 2/
√
δ[

−∆ + b · ∇ has an operator realization Λq(b) on Lq as the generator of a positivity preserving, L∞

contraction, quasi contraction C0 semigroup e−tΛq(b) such that u := (µ+ Λq(b))
−1f , f ∈ Lq satisfies

‖∇u‖q ≤ K1(µ − µ0)
− 1

2‖f‖q, ‖∇|∇u| q2 ‖
2
q

2 ≤ K2(µ− µ0)
1
q
− 1

2‖f‖q, µ > µ0,

for some constants µ0 ≡ µ0(d, q, δ) > 0 andKi = Ki(d, q, δ) > 0, i = 1, 2. In particular, if δ < 1∧
(

2
d−2

)2
,

there exists q > 2 ∨ (d− 2) such that u ∈ C0,γ , γ = 1− d−2
q . The explicit dependence of the regularity

properties of u on δ (which effectively plays the role of a “coupling constant”) is a crucial feature of

the result in [KS].

In the present paper our concern is: to find a class of matrices a ∈ (Hu) such that the operator (1)

with b ∈ Fδ admits a W 1,p and C0,γ regularity theory. Below we consider

a = I + c f ⊗ f, c > −1, f ∈
[

L∞ ∩W 1,2
loc

]d
, ‖f‖∞ = 1, (⋆)

∇if ∈ Fδi , δi > 0, i = 1, 2, . . . , d, δf :=
∑d

i=1 δ
i. (Cδf )

The model example of such a is the matrix

a(x) = I + c|x|−2x⊗ x, x ∈ Rd (2)

having critical discontinuity at the origin, see [GS, GrS, KiS2, OGr] and references therein. (Replacing

the requirement ∇if ∈ Fδi by a more restrictive ∇if ∈ [Lp + L∞]d, p > d, forces a to be Hölder

continuous. On the other hand, a weaker condition ∇if ∈ [Lp + L∞]d, p < d, is incompatible with the

uniform ellipticity of a. The condition (Cδf ) () ∇if ∈ [Ld +L∞]d) seems to be rather natural. We also

note that the operator −a · ∇2 with ∇kaij ∈ Ld,∞ has been studied earlier in [AT], cf. the discussion

below concerning the non-divergence form operators.)

In Theorems 1, 2 below we characterize quantitative dependence on c, δ, δf of the Lq → W 1,qd/(d−2)

regularity of the resolvent of the operator realization of (1) as (minus) generator of positivity preserving

L∞ contraction C0 semigroups in Lq, q ≥ 2 ∨ (d− 2).

Consider the non-divergence form operator

− a · ∇2 + b · ∇ ≡ −
d

∑

i,j=1

aij(x)∇i∇j +
d

∑

j=1

bj(x)∇j . (3)

Write −a · ∇2 + b · ∇ ≡ −∇ · a · ∇+ (∇a+ b) · ∇, where (∇a)k :=
∑d

i=1(∇iaik), k = 1, 2, . . . , d. Then

∇a = c
[

(divf)f + f · ∇f
]

.

It is easily seen that the condition (Cδf ) yields ∇a ∈ Fδa with δa ≤ |c|2(
√
d + 1)2δf . The latter yields

an analogue of Theorem 2 for (3) (Corollary 1 below).

Theorem 2 and Corollary 1 are needed to run an iteration procedure Lp → L∞ that yields associated

with (1), (3) Feller semigroups on C∞ = C∞(Rd) (the space of all continuous functions vanishing at

infinity endowed with the sup-norm), see Theorem 3 and Corollary 2 below.

In the same manner as it was done in [KiS3] for the operator −∆+b·∇, the Feller process constructed

in Corollary 2 admits a characterization as a weak solution to the stochastic differential equation

dXt = −b(Xt)dt+
√

2a(Xt)dWt, X0 = x0 ∈ Rd.
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We plan to address this matter in another paper.

All the proofs below work for

a = I +

∞
∑

j=1

cjfj ⊗ fj, ‖fj‖∞ = 1, (4)

with fj satisfying (Cδf ), and c+ :=
∑

cj>0 cj < ∞, c− :=
∑

cj<0 cj > −1. (A decomposition (4) can be

obtained from the spectral decomposition of a general uniformly elliptic a.)

2. We now state our results in full.

Theorem 1 (−∇ · a · ∇). Let d ≥ 3. Let a = I + c f ⊗ f be given by (⋆).

(i) The formal differential expression −∇·a ·∇ has an operator realization Aq in Lq for all q ∈
[

1,∞[

as the (minus) generator of a positivity preserving L∞ contraction C0 semigroup.

(ii) Assume that (Cδf ) holds with δf , c and q ≥ 2 ∨ (d− 2) satisfying the following constraint:

−
(

1 + q
√

δf
)−1

< c <

{

16
[

q
√
δf
(

8 + q
√
δf
)]−1

if q
√
δf ≤ 4,

(

q
√
δf − 1

)−1
if q

√
δf ≥ 4.

Then, for each µ > 0 and f ∈ Lq, u := (µ + Aq)
−1f belongs to W 1,q ∩W 1, qd

d−2 . Moreover, there exist

constants µ0 = µ0(d, q, c, δf ) > 0 and Kl = Kl(d, q, c, δf ), l = 1, 2, such that, for all µ > µ0,

‖∇u‖q ≤ K1(µ− µ0)
− 1

2‖f‖q,

‖∇u‖ qd
d−2

≤ K2(µ− µ0)
1
q
− 1

2 ‖f‖q.
(⋆⋆)

Remarks. 1. δf effectively estimates from above the “size” of the discontinuities of a.

2. For the matrix (2), the constraints on c in Theorem 1 (and in other results below) can be sub-

stantially relaxed, see [KiS2].

Theorem 2 (−∇ · a · ∇+ b · ∇). Let d ≥ 3. Let a = I + c f ⊗ f be given by (⋆). Let b ∈ Fδ.

(i) If δ1 := [1∨ (1 + c)−2] δ < 4, then −∇ · a · ∇+ b · ∇ has an operator realization Λq(a, b) in Lq for

all q ∈
[

2
2−

√
δ1
,∞[ as the (minus) generator of a positivity preserving L∞ contraction C0 semigroup.

(ii) Assume that (Cδf ) holds, ∇a ∈ Fδa , δ < 1 ∧
(

2
d−2

)2
, δa, δf , c and q ≥ 2 ∨ (d − 2) satisfy the

constraints:

0 < c < (q − 1−Q)



























[

(q − 1) q
√
δf

2 + q2(
√
δf+

√
δ)2

16 + (q − 2) q
2δf
16

]−1
if 1− q

√
δf

4 − q
√
δ

4 ≥ 0,

( q2
√
δf

2 + (q − 2) q
2δf
16 + q

√
δ

2 − 1
)−1

if 0 ≤ 1− q
√
δf

4 < q
√
δ

4 ,

[

(q − 1)
(

q
√
δf − 1

)

+ q
√
δ

2

]−1
if 1− q

√
δf

4 < 0,

where Q := q
√
δ

2

[

q − 2 +
(√

δa +
√
δ
) q
2

]

, or

−
(

q − 1−Q
)

[

(q − 1)
(

1 + q
√

δf) +
q
√
δ

2

]−1

< c < 0.

Then there exist constants µ0 = µ0(d, q, c, δ, δa, δf) > 0 and Kl = Kl(d, q, c, δ, δa , δf), l = 1, 2, such that

(⋆⋆) hold for u := (µ+ Λq(a, b))
−1f , µ > µ0, f ∈ Lq.



4 D.KINZEBULATOV AND YU.A. SEMËNOV

Remarks. 1. Taking c = 0 (then δa = 0), we recover in Theorem 2(ii) the result of [KS, Lemma 5]:

δ < 1 ∧
(

2
d−2

)2
.

2. Theorem 2(i) is an immediate consequence of the following general result. Let a be an Ld

measurable uniformly elliptic matrix on Rd. Set A ≡ A2 := [−∇ · a · ∇ ↾ C∞
c ]clos2→2. A vector field

b : Rd → Rd belongs to Fδ1(A), δ1 > 0, the class of form-bounded vector fields (with respect to A), if

b2a := b · a−1 · b ∈ L1
loc and there exists a constant λ = λδ1 > 0 such that

‖ba(λ+A)−
1
2‖2→2 ≤

√

δ1.

If b ∈ Fδ1(A), δ1 < 4, then −∇·a·∇+b·∇ has an operator realization Λq(a, b) in Lq for all q ∈
[

2
2−

√
δ1
,∞[

as the (minus) generator of a positivity preserving L∞ contraction C0 semigroup, see [KiS, Theorem

3.2].

Corollary 1 (−a · ∇2 + b · ∇). Let d ≥ 3. Let a = I + c f ⊗ f be given by (⋆). Let b ∈ Fδ, ∇a ∈ Fδa .

Then ∇a+ b ∈ Fδ2,
√
δ2 :=

√
δa +

√
δ.

(i) If δ1 := [1∨ (1+ c)−2] δ2 < 4, then −a · ∇2 + b · ∇ has an operator realization Λq(a,∇a+ b) in Lq

for all q ∈
[

2
2−

√
δ1
,∞[ as the (minus) generator of a positivity preserving L∞ contraction C0 semigroup.

(ii) Assume that (Cδf ) holds, and δ2 < 1 ∧
(

2
d−2

)2
, δa, δf , c, q ≥ 2 ∨ (d− 2) satisfy the constraints:

0 < c < (q − 1−Q)



























[

(q − 1) q
√
δf

2 + q2(
√
δf+

√
δ2)2

16 + (q − 2) q
2δf
16

]−1
if 1− q

√
δf

4 − q
√
δ2
4 ≥ 0,

( q2
√
δf

2 + (q − 2) q
2δf
16 + q

√
δ2
2 − 1

)−1
if 0 ≤ 1− q

√
δf

4 < q
√
δ2
4 ,

[

(q − 1)
(

q
√
δf − 1

)

+ q
√
δ2
2

]−1
if 1− q

√
δf

4 < 0,

where Q := q
√
δ2
2

[

q − 2 +
(√

δa +
√
δ2
) q
2

]

, or

−
(

q − 1−Q
)

[

(q − 1)
(

1 + q
√

δf) +
q
√
δ2
2

]−1

< c < 0.

Then there exist constants µ0 = µ0(d, q, c, δ2, δa, δf) > 0 and Kl = Kl(d, q, c, δ2, δa, δf), l = 1, 2, such

that the estimates (⋆⋆) hold for u = (µ +Λq(a,∇a+ b))−1f , µ > µ0, f ∈ Lq.

Set bn := eǫn∆(1nb), ǫn ↓ 0, n ≥ 1, where 1n is the indicator of {x ∈ Rd | |x| ≤ n, |b(x)| ≤ n}. Also,
set fn := (fin)

d
i=1, f

i
n := eǫn∆(ηnf

i), ǫn ↓ 0, n ≥ 1, where

ηn(x) :=











1, if |x| < n,

n+ 1− |x|, if n ≤ |x| ≤ n+ 1, (x ∈ Rd)

0, if |x| > n+ 1.

Theorem 3 (−∇·a ·∇+b ·∇). (i) In the assumptions of Theorem 2(ii), the formal differential operator

−∇ · a · ∇ + b · ∇ has an operator realization −ΛC∞
(a, b) as the generator of a positivity preserving

contraction C0 semigroup in C∞ defined by

e−tΛC∞
(a,b) := s-C∞- lim

n
e−tΛC∞

(an,bn) (loc. uniformly in t ≥ 0),

where an := I+c fn⊗fn ⊂ [C∞]d×d, ΛC∞
(an, bn) := −∇·an ·∇+bn ·∇, D(ΛC∞

(an, bn)) = (1−∆)−1C∞.
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(ii) [The Lr-strong Feller property ]
(

(µ+ΛC∞
(a, b))−1 ↾ Lr ∩C∞

)clos

Lr→C∞

∈ B(Lr, C
0,1− d

rj ) for some

r > d− 2 and all µ > µ0.

(iii) The integral kernel of e−tΛC∞
(a,b) determines the transition probability function of a Feller

process.

Corollary 2 (−a ·∇2+b ·∇). (i) In the assumptions of Corollary 1(ii), the formal differential operator

−a · ∇2 + b · ∇ has an operator realization −ΛC∞
(a,∇a+ b) as the generator of a positivity preserving

contraction C0 semigroup in C∞ defined by

e−tΛC∞
(a,∇a+b) := s-C∞- lim

n
e−tΛC∞

(an,∇an+bn) (loc. uniformly in t ≥ 0),

where an = I + c fn ⊗ fn ⊂ [C∞]d×d, ΛC∞
(an,∇an + bn) := −an · ∇2 + bn · ∇, D(ΛC∞

(an,∇an + bn)) =

(1−∆)−1C∞.

(ii) [The Lr-strong Feller property ]
(

(µ+ΛC∞
(a,∇a+ b))−1 ↾ Lr ∩C∞

)clos

Lr→C∞

∈ B(Lr, C
0,1− d

rj ) for

some r > d− 2 and all µ > µ0.

(iii) The integral kernel of e−tΛC∞
(a,∇a+b) determines the transition probability function of a Feller

process.

Remarks. Since our assumptions on δf , δa and δ involve only strict inequalities, we may assume that

(Cδf ) holds for fn, ∇an ∈ Fδa, bn ∈ Fδ with λ 6= λ(n) (5)

for appropriate ǫn ↓ 0. In fact, the proofs work for any approximations {fn}, {bn} ⊂ [C∞]d such that

‖fn‖∞ = 1, (5) holds, and

fn → f,∇ifn → ∇if strongly in [L2
loc]

d, i = 1, 2, . . . , d,

bn → b strongly in [L2
loc]

d.

1. Proof of Theorem 1

Proof of (i). In what follows, we use notation

〈h〉 :=
∫

Rd

h(x)dx, 〈h, g〉 := 〈hḡ〉.

Define t[u, v] := 〈∇u · a · ∇v̄〉, D(t) = W 1,2. There is a unique self-adjoint operator A ≡ A2 ≥ 0

on L2 associated with the form t: D(A) ⊂ D(t), 〈Au, v〉 = t[u, v], u ∈ D(A), v ∈ D(t). −A is the

generator of a positivity preserving L∞ contraction C0 semigroup T t
2 ≡ e−tA, t ≥ 0, on L2. Then

T t
r := [Tt ↾ Lr ∩ L2]Lr→Lr determines C0 semigroup on Lr for all r ∈ [1,∞[. The generator −Ar of

T t
r (≡ e−tAr ) is the desired operator realization of ∇ · a · ∇ in Lr, r ∈ [1,∞[. Moreover, (µ + Ar)

−1 is

well defined on Lr for all µ > 0. This completes the proof of the assertion (i) of the theorem.

Proof of (ii). First, we prove an a priori variant of (⋆⋆). Set an := I + cfn ⊗ fn, where fn have been

defined in the beginning of the paper. Since our assumption on δf is a strict inequality, we may assume

that (Cδf ) holds for fn for all n ≥ 1 with λ 6= λ(n) for appropriate ǫn ↓ 0. We also note that ‖fn‖∞ = 1.

Set u ≡ un := (µ + An
q )

−1f , 0 ≤ f ∈ C1
c , where An

q := −∇ · an · ∇, D(An
q ) = W 2,q, n ≥ 1. Clearly,

0 ≤ un ∈ W 3,q.
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Denote w ≡ wn := ∇un. For brevity, below we omit the index n: f ≡ fn, a ≡ an, Aq ≡ An
q . Set

Iq :=
d

∑

r=1

〈(∇rw)
2|w|q−2〉, Jq := 〈(∇|w|)2|w|q−2〉,

Īq := 〈
(

f · ∇w
)2|w|q−2〉, J̄q := 〈(f · ∇|w|)2|w|q−2〉.

Set [F,G]− := FG−GF .

1. We multiply µu+Aqu = f by φ := −∇ · (w|w|q−2) and integrate:

µ〈|w|q〉+ 〈Aqw,w|w|q−2〉+ 〈[∇, Aq]−u,w|w|q−2〉 = 〈f, φ〉,

µ〈|w|q〉+ Iq + cĪq + (q − 2)(Jq + cJ̄q) + 〈[∇, Aq]−u,w|w|q−2〉 = 〈f, φ〉.
The term to evaluate is this:

〈[∇, Aq]−u,w|w|q−2〉 :=
d

∑

r=1

〈[∇r, Aq]−u,wr|w|q−2〉.

From now on, we omit the summation sign in repeated indices. Note that

[∇r, Aq]− = −∇ · (∇ra) · ∇, (∇ra)il = c(∇rf
i)fl + cfi∇rf

l.

Thus,

〈[∇r, Aq]−u,wr|w|q−2〉 = c
〈

[

(∇rf
i)fl + f

i∇rf
l
]

wl,∇i(wr|w|q−2)
〉

=: S1 + S2,

S1 = c
〈

(∇rf) · (∇rw)(f · w)|w|q−2
〉

+ c(q − 2)
〈

(∇rf) · (∇|w|)(f · w)wr|w|q−3
〉

,

S2 = c
〈

(∇rf) · w, (f · ∇wr)|w|q−2
〉

+ c(q − 2)
〈

(∇rf) · w,wr|w|q−3
f · ∇|w|

〉

.

By the quadratic estimates and the condition (Cδf ),

S1 ≤ |c|
[

α

(

δf
q2

4
Jq + λδf‖w‖qq

)

+
1

4α
Iq

]

+ |c|(q − 2)

[

α1

(

δf
q2

4
Jq + λδf‖w‖qq

)

+
1

4α1
Jq

]

, α, α1 > 0

S2 ≤ |c|
[

γ

(

δf
q2

4
Jq + λδf‖w‖qq

)

+
1

4γ
Īq

]

+ |c|(q − 2)

[

γ1

(

δf
q2

4
Jq + λδf‖w‖qq

)

+
1

4γ1
J̄q

]

, γ, γ1 > 0.

Thus, selecting α = α1 =
1

q
√
δf
, we obtain the inequality

µ‖w‖qq + Iq + cĪq + (q − 2)(Jq + cJ̄q)

≤ |c|
[

q

√
δf
4

Jq +
q
√
δf

4
Iq

]

+ |c|(q − 2)
q
√
δf

2
Jq

+ |c|
[

γδf
q2

4
Jq +

1

4γ
Īq

]

+ |c|(q − 2)

[

γ1δf
q2

4
Jq +

1

4γ1
J̄q

]

(6)

+ µ0‖w‖qq + 〈f, φ〉

where µ0 := |c|λ
√
δf
(

q−1 + γ
√
δf) + |c|(q − 2)λ

√
δf
(

q−1 + γ1
√
δf
)

.

2. Let us prove that there exists constant η > 0 such that

(µ− µ0)‖w‖qq + ηJq ≤ 〈f, φ〉. (∗)
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Case c > 0. First, suppose that 1 − q
√
δf

4 ≥ 0. We select γ = γ1 := 1
4 , so the terms Īq, J̄q are no

longer present in (6). By the assumption of the theorem 1− c q
√
δf

4 ≥ 0, so using Jq ≤ Iq we obtain

(µ− µ0)‖w‖qq + (q − 1)

[

1− c
q
√
δf

2
− c

q2δf
16

]

Jq ≤ 〈f, φ〉,

where µ0 = cλ
√
δf(q− 1)

(

1
q +

√
δf
4

)

and the coefficient [. . . ] is strictly positive by the assumptions of the

theorem.

Now, suppose that 1 − q
√
δf

4 < 0. We select γ = γ1 := 1
q
√
δf

and replace J̄q, Īq by Jq, Iq. Then, since

1− c
( q

√
δf

2 − 1
)

≥ 0 by the assumptions of the theorem, we apply Jq ≤ Iq to obtain

(µ− µ0)‖w‖qq + (q − 1)

[

1− c
(

q
√

δf − 1
)

]

Jq ≤ 〈f, φ〉,

where µ0 = cλ
√
δf(q − 1)

(

1
q + 1

q

)

and the coefficient [. . . ] is strictly positive by the assumption of the

theorem. We have proved (∗) with µ0 = cλ
√
δf(q − 1)

(

1
q +

√
δf
4 ∨ 1

q

)

.

Remark. Elementary considerations show that the above choice of α, α1, γ, γ1 is the best possible.

Case c < 0. We select γ = γ1 :=
1

q
√
δf
, so that

µ‖w‖qq +
(

1− |c|q
√
δf

4

)

Iq +

[

q − 2− |c|(q − 1)
q
√
δf

2
− |c|(q − 2)

q
√
δf

4

]

Jq

≤ |c|
(

1 +
q
√
δf

4

)

Īq + |c|(q − 2)

(

1 +
q
√
δf

4

)

J̄q + µ0‖w‖qq + 〈f, φ〉,

where µ0 = 2cλ
√
δf

q−1
q . Next, using Īq ≤ Iq, J̄q ≤ Jq, we obtain

(µ − µ0)‖w‖qq +
(

1− |c| − |c|q
√
δf

2

)

Iq

+

[

q − 2− |c|(q − 1)
q
√
δf

2
− |c|(q − 2)

q
√
δf

4
− |c|(q − 2)

(

1 +
q
√
δf

4

)]

Jq ≤ 〈f, φ〉.

By the assumptions of the theorem, 1− |c| − |c| q
√
δf

2 ≥ 0. Therefore, by Iq ≥ Jq,

(µ− µ0)‖w‖qq +
[

q − 1− |c|(q − 1)− |c|q2
√

δf

]

Jq ≤ 〈f, φ〉,

and hence the coefficient [. . . ] is strictly positive. We have proved (∗).
3. We estimate the term 〈f, φ〉 as follows.

Lemma 1. For each ε0 > 0 there exists a constant C = C(ε0) < ∞ such that

〈f, φ〉 ≤ ε0Iq + C‖w‖q−2
q ‖f‖2q .

Proof of Lemma 1. We have:

〈f, φ〉 = 〈−∆u, |w|q−2f〉+ (q − 2)〈|w|q−3w · ∇|w|, f〉 =: F1 + F2.
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Due to |∆u|2 ≤ d|∇rw|2 and 〈|w|q−2f〉 ≤ ‖w‖q−2
q ‖f‖2q ,

F1 ≤
√
dI

1
2
q ‖w‖

q−2
2

q ‖f‖q, F2 ≤ (q − 2)J
1
2
q ‖w‖

q−2
2

q ‖f‖q,

Now the standard quadratic estimates yield the lemma. �

We choose ε0 > 0 in Lemma 1 so small that in the estimates below we can ignore ε0Iq.

4. Clearly, (∗) yields the inequalities

‖∇un‖q ≤ K1(µ − µ0)
− 1

2‖f‖q, K1 := C
1
2 ,

‖∇un‖qj ≤ K2(µ− µ0)
− 1

2
+ 1

q ‖f‖q, K2 := CSη
− 1

q (q2/4)
1
qC

1
2
− 1

q ,

where CS is the constant in the Sobolev Embedding Theorem. So, [KiS, Theorem 3.5] ((µ + Aq)
−1 =

s-Lq- limn(µ+An
q )

−1) yields (⋆⋆). The proof of Theorem 1 is completed.

2. Proof of Theorem 2

Proof of (i). Recall that a vector field b : Rd → Rd belongs to Fδ1(A), δ1 > 0, the class of form-

bounded vector fields (with respect to A ≡ A2 := [−∇ · a · ∇ ↾ C∞
c ]clos2→2), if b

2
a := b · a−1 · b ∈ L1

loc and

there exists a constant λ = λδ1 > 0 such that

‖ba(λ+A)−
1
2‖2→2 ≤

√

δ1.

It is easily seen that if b ∈ Fδ, then b ∈ Fδ1(A), with δ1 := [1 ∨ (1 + c)−2] δ. By the assumptions of

the theorem, δ1 < 4. Therefore, by [KiS, Theorem 3.2], −∇ · a · ∇ + b · ∇ has an operator realization

Λq(a, b) in Lq, q ∈
[

2
2−

√
δ1
,∞

[

, as the (minus) generator of a positivity preserving L∞ contraction quasi

contraction C0 semigroup. Moreover, (µ + Λq(a, b))
−1 is well defined on Lq for all µ > λδ

2(q−1) . This

completes the proof of (i).

Proof of (ii). First, we prove an a priori variant of (⋆⋆). Set an := I + cfn ⊗ fn, where fn have

been defined in the beginning of the paper. Since our assumptions on δf , δa and δ involve only strict

inequalities, we may assume that (Cδf ) holds for fn, ∇an ∈ Fδa , bn ∈ Fδ with λ 6= λ(n) for appropriate

ǫn ↓ 0. We also note that ‖fn‖∞ = 1.

Denote An
q := −∇ · an · ∇, D(An

q ) = W 2,q. Set u ≡ un := (µ + Λq(an, bn))
−1f , 0 ≤ f ∈ C1

c , n ≥ 1,

where Λq(an, bn) = An
q + bn · ∇, D(Λq(an, bn)) = D(An

q ). Clearly, 0 ≤ un ∈ W 3,q. It is easily seen that

bn ∈ Fδ1(A
n) with λ 6= λ(n), so (µ + Λq(an, bn))

−1 are well defined on Lq for all n ≥ 1, µ > λδ
2(q−1) .

1. Denote w ≡ wn := ∇un. Below we omit the index n: f ≡ fn, a ≡ an, b ≡ bn, Aq ≡ An
q . Set

Iq := 〈(∇rw)
2|w|q−2〉, Jq := 〈(∇|w|)2|w|q−2〉,

Īq := 〈
(

f · ∇w
)2|w|q−2〉, J̄q := 〈(f · ∇|w|)2|w|q−2〉.

Arguing as in the proof of Theorem 1, we arrive at
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µ〈|w|q〉+ Iq + cĪq + (q − 2)(Jq + cJ̄q)

≤ |c|
[

αδf
q2

4
Jq +

1

4α
Iq

]

+ |c|(q − 2)

[

α1δf
q2

4
Jq +

1

4α1
Jq

]

(7)

+ |c|
[

γδf
q2

4
Jq +

1

4γ
Īq

]

+ |c|(q − 2)

[

γ1δf
q2

4
Jq +

1

4γ1
J̄q

]

+ µ00‖w‖qq + 〈−b · w,φ〉+ 〈f, ϕ〉, with α = α1 :=
1

q
√
δf
,

where µ00 := |c|λ
√
δf
(

q−1 + γ
√
δf) + |c|(q − 2)λ

√
δf
(

q−1 + γ1
√
δf
)

, and γ, γ1 > 0 are to be chosen.

2. We estimate the term 〈−b · w,φ〉 as follows.

Lemma 2. There exist constants Ci (i = 0, 1) such that

〈−b · w,φ〉 ≤
[

(
√
δ
√

δa + δ
)q2

4
+ (q − 2)

q
√
δ

2

]

Jq + |c|q
√
δ

2
J

1
2
q Ī

1
2
q + C0‖w‖qq + C1‖w‖q−2

q ‖f‖2q.

Proof. We have:

〈−b · w,φ〉 = 〈−∆u, |w|q−2(−b · w)〉 + (q − 2)〈|w|q−3w · ∇|w|,−b · w〉
=: F1 + F2.

Set Bq := 〈|b · w|2|w|q−2〉. We have

F2 ≤ (q − 2)B
1
2
q J

1
2
q .

Next, we bound F1. Recall that ∇a = c
[

(divf)f+f ·∇f
]

. We represent −∆u = ∇·(a−1)·w−µu−b·w+f ,

and evaluate: ∇ · (a− 1) · w = ∇a · w + cf · (f · ∇w), so

F1 = 〈∇ · (a− 1) · w, |w|q−2(−b · w)〉 + 〈(−µu− b · w + f), |w|q−2(−b · w)〉
= 〈∇a · w, |w|q−2(−b · w)〉
+ c〈f · (f · ∇w), |w|q−2(−b · w)〉
+ 〈(−µu− b · w + f), |w|q−2(−b · w)〉.

Set Pq := 〈|∇a ·w|2|w|q−2〉. We bound F1 from above by applying consecutively the following estimates:

1◦) 〈∇a · w, |w|q−2(−b · w)〉 ≤ P
1
2
q B

1
2
q .

2◦) 〈f · (f · ∇w), |w|q−2(−b · w)〉 ≤ Ī
1
2
q B

1
2
q .

3◦) 〈µu, |w|q−2(−b · w)〉 ≤ µ
µ−ωq

B
1
2
q ‖w‖

q−2
2

q ‖f‖q
(

here 2
2−

√
δ
< q ⇒ ‖u‖q ≤ (µ− ωq)

−1‖f‖q
)

.

4◦) 〈b · w, |w|q−2b · w〉 = Bq.

5◦) 〈f, |w|q−2(−b · w)〉| ≤ B
1
2
q ‖w‖

q−2
2

q ‖f‖q.

In 3◦) and 5◦) we estimate B
1
2
q ‖w‖

q−2
2

q ‖f‖q ≤ ε0Bq +
1

4ε0
‖w‖q−2

q ‖f‖2q (ε0 > 0).

Therefore,

〈−b · w,φ〉 ≤ P
1
2
q B

1
2
q + |c|Ī

1
2
q B

1
2
q +Bq + (q − 2)B

1
2
q J

1
2
q + ε0Bq + C1(ε0)‖w‖q−2

q ‖f‖2q .
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It is easily seen that b ∈ Fδ is equivalent to the inequality

〈b2|ϕ|2〉 ≤ δ〈|∇ϕ|2〉+ λδ〈|ϕ|2〉, ϕ ∈ W 1,2.

Thus,

Bq ≤ ‖b|w| q2 ‖22 ≤ δ‖∇|w| q2 ‖22 + λδ‖w‖qq =
q2δ

4
Jq + λδ‖w‖qq .

Similarly, using that ∇a ∈ Fδa , we obtain

Pq ≤ ‖(∇a)|w| q2 ‖22 ≤ δa‖∇|w| q2 ‖22 + λδa‖w‖qq =
q2δa
4

Jq + λδa‖w‖qq .

Then selecting ε0 > 0 sufficiently small, and noticing that the assumption on δ, δa in the theorem are

strict inequalities, we can and will ignore below the terms multiplied by ε0. The proof of Lemma 2 is

completed. �

In (7), we apply Lemma 2 where the inequality q
√
δ

2 J
1
2
q Ī

1
2
q ≤ γ2

q2δ
4 Jq +

1
4γ2

Īq, γ2 > 0, is used. Thus,

we have

µ‖w‖qq + Iq + cĪq + (q − 2)(Jq + cJ̄q)

≤ |c|
[

q
√
δf

4
Jq +

q
√
δf

4
Iq

]

+ |c|(q − 2)
q
√
δf

2
Jq (8)

+ |c|
[

(γδf + γ2δ)
q2

4
Jq +

(

1

4γ
+

1

4γ2

)

Īq

]

+ |c|(q − 2)

[

γ1δf
q2

4
Jq +

1

4γ1
J̄q

]

+

[

(
√
δ
√

δa + δ
)q2

4
+ (q − 2)

q
√
δ

2

]

Jq + µ0‖w‖qq + C1‖w‖q−2
q ‖f‖2q + 〈f, φ〉,

where µ0 := |c|λ
√
δf
(

q−1 + γ
√
δf) + |c|(q − 2)λ

√
δf
(

q−1 + γ1
√
δf
)

+ C0.

3. Let us prove that there exists constant η > 0 such that

(µ − µ0)‖w‖qq + ηJq ≤ C1‖w‖q−2
q ‖f‖2q + 〈f, φ〉. (∗)

Set Q :=
(
√
δ
√
δa + δ

) q2

4 + (q − 2) q
√
δ

2 .

Case c > 0. First, suppose that 1 − q
√
δf

4 − q
√
δ

4 ≥ 0. We select γ, γ2 > 0 such that 1
4γ + 1

4γ2
= 1

while γδf + γ2δ attains its minimal value. It is easily seen that γ = 1
4

(

1 +
√

δ
δf

)

, γ2 =
1
4

(

1 +
√

δf
δ

)

. We

have 1− q
√
δf

4 ≥ 0, and select γ1 =
1
4 . Thus, the terms Īq, J̄q are no longer present in (8):

µ‖w‖qq +
(

1− c
q
√
δf

4

)

Iq

+

[

q − 2− c
q
√
δf

4
− c(q − 2)

q
√
δf

2
− c(δf + 2

√

δfδ + δ)
q2

16
− c(q − 2)

q2δf
16

−Q

]

Jq

≤ µ0‖w‖qq + C1‖w‖q−2
q ‖f‖2q + 〈f, φ〉.
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By the assumptions of the theorem, 1− c q
√
δf

4 ≥ 0, so by Jq ≤ Iq we obtain

µ‖w‖qq +
[

q − 1− c(q − 1)
q
√
δf

2
− c(δf + 2

√

δfδ + δ)
q2

16
− c(q − 2)

q2δf
16

−Q

]

Jq

≤ µ0‖w‖qq + C1‖w‖q−2
q ‖f‖2q + 〈f, φ〉.

Next, suppose that 1− q
√
δf

4 − q
√
δ

4 < 0, but 1− q
√
δf

4 ≥ 0. We select γ = 1
q
√
δf
, γ2 =

1
q
√
δ
, and γ1 =

1
4 .

Then the term J̄q is no longer present, so using Īq ≤ Iq we obtain

µ‖w‖qq +
[

1 + c

(

1− q
√
δf

2
− q

√
δ

4

)]

Iq

+

[

q − 2− c
q
√
δf

4
− c(q − 2)

q
√
δf

2
− c

q
√
δf + q

√
δ

4
− c(q − 2)

q2δf
16

−Q

]

Jq

≤ µ0‖w‖qq + C1‖w‖q−2
q ‖f‖2q + 〈f, φ〉.

Thus, since 1 + c
(

1− q
√
δf

2 − q
√
δ

4

)

≥ 0 by the assumptions of the theorem, we have using Jq ≤ Iq

µ〈|w|q〉+
[

q − 1 + c− c
q
√
δ

2
− c

q2
√
δf

2
− c(q − 2)

q2δf
16

−Q

]

Jq

≤ µ0‖w‖qq + C1‖w‖q−2
q ‖f‖2q + 〈f, φ〉,

Finally, suppose that 1− q
√
δf

4 < 0. We select γ = γ1 =
1

q
√
δf
, γ2 =

1
q
√
δ
. Then using Īq ≤ Iq, J̄q ≤ Jq

we obtain

µ‖w‖qq +
[

1 + c

(

1− q
√
δf

2
− q

√
δ

4

)]

Iq +

[

q − 2 + c(q − 2)

(

1− q
√
δf

4

)

− c
q
√
δf

4
− c(q − 2)

q
√
δf

2
− c

q
√
δf + q

√
δ

4
− c(q − 2)

q
√
δf

4
−Q

]

Jq

≤ µ0‖w‖qq + C1‖w‖q−2
q ‖f‖2q + 〈f, φ〉.

Since 1 + c
(

1− q
√
δf

2 − q
√
δ

4

)

≥ 0 by the assumptions of the theorem, we have using Jq ≤ Iq

µ‖w‖qq +
[

q − 1 + c(q − 1)− c
q
√
δ

2
− c(q − 1)q

√

δf −Q

]

Jq

≤ µ0‖w‖qq + C1‖w‖q−2
q ‖f‖2q + 〈f, φ〉,

In all three cases, the coefficient of Jq is positive. We have proved (∗).
Case c < 0. In (8), select γ = γ1 =

1
q
√
δf
, γ2 =

1
q
√
δ
:

µ‖w‖qq +
(

1− |c|q
√
δf

4

)

Iq

+

[

q − 2− |c|(q − 1)
q
√
δf

2
− |c|(q − 2)

q
√
δf

4
− |c|q

√
δ

4
−Q

]

Jq

− |c|
(

1 +
q
√
δf

4
+

q
√
δ

4

)

Īq − |c|(q − 2)

(

1 +
q
√
δf

4

)

J̄q ≤ µ0‖w‖qq + C1‖w‖q−2
q ‖f‖2q + 〈f, φ〉.
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Using Iq ≥ Īq, Jq ≥ J̄q, we obtain

µ‖w‖qq +
(

1− |c|
(

1 +
q
√
δf

2
+

q
√
δ

4

))

Iq

+

[

q − 2− |c|(q − 1)
q
√
δf

2
− |c|(q − 2)

q
√
δf

4
− |c|q

√
δ

4
− |c|(q − 2)

(

1 +
q
√
δf

4

)

−Q

]

Jq

≤ µ0‖w‖qq + C1‖w‖q−2
q ‖f‖2q + 〈f, φ〉.

By the assumptions of the theorem, 1− |c|
(

1 + q
√
δf

2 + q
√
δ

4

)

≥ 0. Therefore, by Iq ≥ Jq,

µ‖w‖qq +
[

q − 1− |c|
(

1 +
q
√
δf

2
+

q
√
δ

4

)

− |c|(q − 1)
q
√
δf

2
− |c|(q − 2)

q
√
δf

4
− |c|q

√
δ

4
− |c|(q − 2)

(

1 +
q
√
δf

4

)

−Q

]

Jq

≤ µ0‖w‖qq + C1‖w‖q−2
q ‖f‖2q + 〈f, φ〉,

where the coefficient of Jq is strictly positive by the assumptions of the theorem. We have proved (∗).
4. We estimate the term 〈f, φ〉 by Lemma 1: For each ε0 > 0 there exists a constant C = C(ε0) < ∞

such that

〈f, φ〉 ≤ ε0Iq + C‖w‖q−2
q ‖f‖2q .

We choose ε0 > 0 so small that in the estimates below we can ignore ε0Iq.

Then (∗) yields the inequalities

‖∇un‖q ≤ K1(µ− µ0)
− 1

2‖f‖q, K1 := (C + C1)
1
2 ,

‖∇un‖qj ≤ K2(µ− µ0)
1
q
− 1

2 ‖f‖q, K2 := CSη
− 1

q (q2/4)
1
q (C + C1)

1
2
− 1

q ,

where CS is the constant in the Sobolev Embedding Theorem.

If c > 0 then δ1 = δ < 1. If c < 0 then elementary arguments show that, by the assumptions of

the theorem, δ1 = (1 − |c|)−2δ < 1. Therefore, [KiS, Theorem 3.5] ((µ + Λq(a, b))
−1 = s-Lq- limn(µ +

Λq(an, bn))
−1) yields (⋆⋆). The proof of Theorem 2 is completed.

3. The iteration procedure

The following is a direct extension of the iteration procedure in [KS]. Let a ∈ (Hu).

Recall that a vector field b : Rd → Rd belongs to Fδ1(A), δ1 > 0, the class of form-bounded vector

fields (with respect to A ≡ A2 := [−∇ · a · ∇ ↾ C∞
c ]clos2→2), if b

2
a := b · a−1 · b ∈ L1

loc and there exists a

constant λ = λδ1 > 0 such that ‖ba(λ+A)−
1
2 ‖2→2 ≤

√
δ1.

Consider

{an}∞n=1 ⊂ [C1]d×d ∩ (Hu,σ,ξ)

and

{bn}∞n=1 ⊂ [C1]d ∩
⋂

m≥1

Fδ1(A
m), δ1 < 4, λ 6= λ(n,m).

Here Am ≡ A(am).



W 1,p REGULARITY OF SOLUTIONS TO KOLMOGOROV EQUATION AND ASSOCIATED FELLER SEMIGROUP 13

By [KiS, Theorem 3.2], −Λr(an, bn) := ∇ · an · ∇ − bn · ∇, D(Λr(an, bn)) = W 2,r, is the generator of

a positivity preserving L∞ contraction quasi contraction C0 semigroup on Lr, r ∈
]

2
2−

√
δ1
,∞[, with the

resolvent set of −Λr(an, bn) containing µ > ωr :=
λδ1

2(r−1) for all n ≥ 1.

Set un := (µ +Λr(an, bn))
−1f , f ∈ L1 ∩ L∞ and g := um − un.

Lemma 3. There are positive constants C = C(d), k = k(δ1) such that

‖g‖rj ≤
(

Cσ−1(δ1 + 2ξσ−1)(1 + 2ξ)‖∇um‖2qj
)

1
r
(

r2k
)

1
r ‖g‖1−

2
r

x′(r−2),

where q ∈
]

2
2−

√
δ1

∨ (d− 2), 2√
δ1

[

, 2x = qj, j = d
d−2 , x

′ := x
x−1 and x′(r − 2) > 2

2−
√
δ1
, µ > λδ1 .

The proof follows closely [KiS, proof of Lemma 3.12] or [KS, proof of Lemma 6].

Iterating the inequality of Lemma 3, we arrive at

Lemma 4. In the notation of Lemma 3, assume that supm ‖∇um‖2qj < ∞, µ > µ0. Then for any

r0 >
2

2−
√
δ1

‖g‖∞ ≤ B‖g‖γr0 , µ ≥ 1 + µ0 ∨ λδ1 ,

where γ =
(

1− x′

j

)(

1− x′

j + 2x′

r0

)−1
> 0, and B = B(d, δ1) < ∞.

The proof repeats [KiS, proof of Lemma 3.13] or [KS, proof of Lemma 7].

Remark. The assumption supm ‖∇um‖2qj < ∞ in Lemma 4 is crucial and holds e.g. in the assumptions

of Theorem 2(ii).

4. Proof of Theorem 3

By Lemma 4 and the second inequality in (⋆⋆), we have for all r0 >
2

2−
√
δ1

‖un − um‖∞ ≤ B‖un − um‖γr0 , µ ≥ 1 + µ0 ∨ λδ1 ,

where γ > 0, B < ∞, and un := (µ+ Λr0(an, bn))
−1f , f ∈ L1 ∩ L∞. By [KiS, Theorem 3.5],

(µ + Λr0(a, b))
−1 = s-Lr0- lim

n
(µ+ Λr0(an, bn))

−1,

so {un} is fundamental in C∞.

Lemma 5. s-C∞- limµ↑∞ µ(µ +ΛC∞
(an, bn))

−1 = 1 uniformly in n.

The proof follows closely [KiS, proof of Lemma 3.16].

We are in position to complete the proof of Theorem 3. The assertion (i) follows from the fact that

{un} is fundamental in C∞ and Lemma 5 by applying the Trotter Approximation Theorem. (ii) is

Theorem 2(⋆⋆). The proof of (iii) is standard. The proof of Theorem 3 is completed.

Remark. The arguments of the present paper extend more or less directly to the time-dependent case

∂t −∇ · a(t, x) · ∇+ b(t, x) · ∇, cf. [Ki].
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des sciences de Toulouse (6), 11, 47-56 (2002).

[S] Yu.A. Semenov. On perturbation theory for linear elliptic and parabolic operators; the method of Nash. Contemp.

Math., 221 (1999), p. 217-284.
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