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WP REGULARITY OF SOLUTIONS TO KOLMOGOROV EQUATION WITH
GILBARG-SERRIN MATRIX

D.KINZEBULATOV AND YU. A.SEMENOV

ABsTRACT. In R?, d > 3, consider the divergence and the non-divergence form operators
—A—-V-(a=I)-V+b-V, (2)
~A—(a—1)-V’+b-V, (i4)

where the second order perturbations are given by the matrix

a—I=cz|?z@z, c>-1

The vector field b : RY — R? is form-bounded with the form-bound & > 0 (this includes a sub-critical
class [L% 4 L>]%, as well as vector fields having critical-order singularities). We characterize quantitative
dependence on ¢ and § of the LI — W194/(d=2) regularity of the resolvents of the operator realizations
of (7), (i¢) in LY, ¢ > 2V (d — 2) as (minus) generators of positivity preserving L°° contraction Cy
semigroups.

Consider in R%, d > 3, the operator
d d
“A+b- V==Y 02+ b(2)d, beFs,
i=1 k=1

where F5 = F5(—A), § > 0, is the class of form-bounded vector fields R? — R, that is, [b| € L2 =
L? (R%) and there exist a constant A\ = A\s > 0 such that

loc
1B(A = A) 3 [|ase < V3

(see examples below). By [KS, Lemma 5] (see also [KiS, Theorems 3.7-3.10]), if § < 1 A (%)2, then
for

U:(,U“‘Aq(b))_lfa fEqu qe [2\/(d_2) [7

2
R

IVull g < K| fllq, (%)

one has

2(;‘—2), K = K(u,6,q). Here Ay(b) is an operator realization of —A + b -V as the (minus)

generator of a positivity preserving L contraction Cjy semigroup in L?. The estimate (x) and the

where p >

iteration method in [KS] (see also [KiS, sect.3.6]) allow to construct a Feller process associated with
—A+0b-V.
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2 WL P REGULARITY OF SOLUTIONS TO KOLMOGOROV EQUATION WITH GILBARG-SERRIN MATRIX

In this paper we are concerned with a second order perturbation of —A,
—A—-V-(a—-1)-V, aij(x) = 8 + clz| Pz, ¢ > —1,¢#0. (1)

This is a model example of a divergence form operator that is not accessible by classical means such
as the parametrix [F|, [LSU, Ch.IV]. Although the matrix a is discontinuous at = = 0, it is uniformly
elliptic, so by the De Giorgi-Nash theory, the solution u € W12(R%) to the corresponding elliptic
equation (1 —V-a-Vu=f, u>0, f e LPNL p G]%,oo[, is in C%7, where the Holder continuity
exponent vy €]0, 1] depends only on d and ¢. The operator (1) and its modifications both of divergence
and non-divergence type have been investigated by many authors in order to precise the connection
between the regularity properties of the solution and the continuity properties of the matrix, see [GS],
[M], [LU, Ch.1.2], [ABT], [OG], [A] and references therein.

In Theorem 1 below (the principal result) we show that the perturbation —V - (a — I) - V of —A
preserves, under the appropriate assumptions on ¢, the essential properties of —A that allow to establish
the estimate (x) for u = (u + Aq4(a, b))_lf, where A4(a,b) is an operator realization of

~A-V-(a—1)V+b-V, beF;s

as the (minus) generator of a positivity preserving L* contraction Cy semigroup in L? (Theorem 2).

The class Fs contains a sub-critical class |b| € L%+ L, with § > 0 arbitrarily small, as well as vector
fields having critical-order singularities, e.g. b(z) = %\/3 |z|~22. More generally, if |b] is in L%, the
Campanato-Morrey class or the Chang-Wilson-Wolff class, then b € Fs with § depending on the norm
of |b] in these classes, see e.g. [KiS| for details. We also note that, for the class of uniformly elliptic
matrices as a whole, the class Fy of first order perturbations b -V of —V - a - V destroys the C%Y
regularity of bounded solutions.

Set (Va), = zle(amiaik), 1<k <d. Then Va = ¢(d — 1)|z|2z , and so Va € Fs, § = %.
The latter allows us to construct an operator realization of the non-divergence form operator

d d
—a- V24 b- V== a;(@)0,0s; + > bi(2)0s,, beETFy,
i,j=1 k=1

in L9 as Ay(a,Va+0b) (formally, —a-V?+b-V=-V-a-V+(Va) V+b-V) and then characterize

quantitative dependence of the WP regularity of u = (u+ Ay(a, Va+b))71f, f € L%, on ¢,d, g, n and

91 (Theorems 3 and 4). This result (including the class of first order perturbations b -V, b € Fs, of

—a - V?) can not be achieved on the basis of the Krylov-Safonov a priori estimates [Kr, Ch.4.2]. (We

note that the operator —a - V2 with 9,,a;; € L% has been studied earlier in [AT]; see also [ABT).)
The method of proof of the results of this paper admits immediate extension to

aij(z) = b + Zcmij(x —al), k() = || Pz, (2)
l
Ct 1= ch<oo, c_ = ch > —1,
>0 ;<0

where {z'} is an arbitrary countable subset of R?.
The arguments in this paper can be transferred without significant changes from R¢ to the ball
B(0,1).
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Theorem 2 and the iteration method in [KS] allow to construct a Feller process associated with
—V:a-V+b-V,be Fys. The method of this paper seems to be suited to treat classes of second-order
perturbations —V - (a — I) -V, —(a — I) - V? of —A more general than (2), for example, given by

1
a— I =v®w, where (bounded) v : R? — R? v € VVli’f(Rd,]Rd) satisfies (>, (Vvg)?)? € F5. We plan
to address this matter in another paper.

1. We now state our results in full. First, consider the divergence form operator.

Theorem 1 (—V-a-V). Letd >3, a(z) = +clz|2z®@z, ¢ > —1.

(i) The formal differential operator —V -a -V has an operator realization A, on L7, q € [1, oo[, as
the (minus) generator of a positivity preserving L contraction Cy semigroup.

Set u:= (u+ Ay)~f, u>0, fe Ll

(i) Let d > 4. Assume that ¢ > d — 2 and

(-D@-2° _ _(a-1(d-2

quQ q2€1
where
B - d—2 (d—2)? 1
glzgl(q,d).—d—l—dT—F(l—i‘e)Ta 9_2(d_1)7
(d —2)°

ly =ly(q,d) :=d—1+(¢—1) 7
Then u € ﬂq<p<£ WP and there exist constants K; = K;(d, q,c), | = 1,2, such that
SP=33
_1
[Vullg < K12 fllg,
1_1
IVull_ga < Kop [ fllg-

The dependence on q and p in (x) is the best possible.
(@ii) Let d > 3. Assume that

Ad-1)\ " (d—2)?
—<1+m> <c< 1 .

Then u € W22 and (%) holds with q = 2.

Of special interest are the minimal assumptions on ¢ such that the second estimate in (x) holds with
some q > d — 2.

Corollary 1. Ford =3 and —% <c< %,

1
(p+A) L2 cC™, 4= 3
For all d > 4, —ﬁ <e<2(d—-1)(d—-3) and g > d — 2 sufficiently close to d — 2,
d—3
d—2

(n+ AL C 00,y =122
q
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Theorem 2 (—V-a-V +b-V). Letd >3, a(z) =1 +clz|2z®z, ¢ > —1, b€ Fs.

(7) If §1:=[1V(1+¢)26 <4, then =V -a-V +b-V has an operator realization Ay(a,b) in LA,
qEc< [ s © [, as the (minus) generator of a pOSitivity preserving L contraction Cy semigroup.

(ii) Letd > 4. Assume that ¢ > d—2, 6 < 1A = )2 and c satisfy one of the following two conditions:

1)c>0and1+c(1—ﬁ—7\/—)>0 and

d—2)2
@92 pes) >0
2)—1<c<0and1+c(1—|—#)20,and
d— 2)?
(-1 q2> CIn(—e.8) >0

where

h@ﬁ%Eh@ﬁﬂﬂ%ch+gigw—2y—@—1—2win>w;fy]

q
C _ 9)2 9 o
+_%§qu2)+%d+3xd—m]+[%§+%q_mg%q(d¥m7

L2(C,5) = L2(6,5,q,d) = c[_d+1+ $(d_2)+(q_ 1)(d ;22)2:|
C _9)2 9 L
'*%?[gjgl4%d+3xd—m]+[45+( )%?]qu)-

Then there exist constants pg = po(d,q,c,0) > 0 and K; = Ki(d,q,¢,d) , 1 = 1,2, such that for all
d

w> o, wi= (u+ Ag(a, b)) f, f e L9, isin Whin Wbz, and
_1

IVullg < K1(p = po) 21 fllg,

1£1lg-

(%)

rQ\»—l
m\»—t

Vel s < Kol — o)~

(iii) Let d > 3. Assume that 6 <1V (1+¢)™2 and

4¢
c>0, 1— PR wf@g—5+ )—5>Q

N 4d-1) @1i§+1>—5>&

1<e<0, 1—]e =]l
(d—2)?

Then v € W22 and (xx) holds with q = 2.
Corollary 2. Letd >3, a(z) = + c|z|2r @z, ¢ > —1, b € Fs. If
—g o <c<2d-1)(d-3), d=4,
+d and 6 > 0 is sufficiently small
<c<Z, d=3,

or

4
|c| is sufficiently small and § < 1 A -2
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then, for all d > 4 and q > d — 2 sufficiently close to d — 2,

-2
(+ AglaB) 111 € OOy =1 = 2,
and, for d =3,
1
(1 + Ag(a, b)) ' L2 C C% 4 = 5

REMARK. In Theorem 2, if § = 0, then the assumptions on ¢ and ¢ coincide with the ones in Theorem
1. On the other hand, if ¢ = 0, then the assumptions on J are reduced to § < 1 A ﬁ, SO we recover
the result in [KS, Lemma 5], [KiS, Theorem 3.7].

2. Next, we consider the non-divergence form operator.

Theorem 3 (—a-V?). Letd >3, a(z) =1+ clz| 2@z, ¢ > —1.

(i) —a- V% has an operator realization Ay(a,Va) in L7, q € [(1 — %1—;)_1,00[ if0<c<d-—2,
and q €]1,00] if =1 < ¢ < 0, as the (minus) generator of a positivity preserving L contraction Cjy
semigroup.

Set u:= (u+ Ay(a,Va))~Lf, u>0, f € L9,

(i) Let d > 4. Assume that ¢ > d — 2 and

1 ¢ (q—2)2 -1 d—3 d-2
—11 — <c< A .
<+4d—2(q—1)(q+d—3) STy Ny Cdr2

Then u € Whd ﬂWl’d%, and there exist constants K; = K;(d,q,c), | = 1,2, such that (x) holds (for
w= (5 + Aga, V)~ f).

(7i) Let d >3 and ¢ = 2. Assume that —1 < ¢ < % . Then u € W22,

Corollary 3. (i) Let d > 4. For all ¢ €]0, %[ and q €]d—2,d+ d%?)[, or for allc €] — ——1—— 0]

+1 @ (d;(43iQ )
4 (d—3)(2d—5
and q > d — 2 sufficiently close to d — 2,
d—2
(1 + Ay(a,Va))'L9 c C%, y=1- —=,
q

(i1) For d =3 and all ¢ €] — 1, %[,
1
(1 +As(a,Va)) L € OO,y =2

REMARK. Set a° := I + c|z| 2z ® z, |z := \/|z]? + ¢, e > 0. Let d > 4. Then, in the assumptions of
Theorem 3, we have
(1-+ Agfa, Va)) ™ = LT+ Ay a7, V)™ 3)
&

See Theorem A.2 for details. In particular, u := (u + Ay(a,Va))~Lf, f € L%, is a good solution of
(u—a-V*u = f in the sense of [CEF].

Theorem 4 (—a-V2+b-V). Letd >3, a(z) =1 +cz|2r®z, -1 <c<d—2,beFs.
Set 81 :=[1V (1 +¢)7% 4, and

N \/E+2%1—;C, 0<ec<d—-2,
2T Ve ~1<e<0.
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() Assume that 8o < 4. Then —a - V% +b -V has an operator realization A,(a,Va + b) in L4,
qEc< [ a5, © [, as the (minus) generator of a pOSitivity preserving L contraction Cy semigroup.
(i) Letd > 4. Assume thatq > d—2,0 < 1A

1) ¢>0 and 1+ ¢( —ﬁ—M)>O and

= )2 and c satisfy one of the following two conditions:

d—2)?
(- DY s >0
d—2)% /o [(d—2)?
2, 0) = EM(c, 8, ¢, d) ::c(1+9)( q2) + [( p ) +(d+3)(d —2)
2 2
%0 qVs] (d—2) q
+[4 +(a 2)2] Zz o 'Tiz
2) ~1<c<0and1+c(l+22) >0, and
d—2)?
R L U

+(d+3)(d—2)

d —2)? §[(d—2)?
Ly@ﬁ)zL?@ﬁﬂ@y:cb+wq—ma+eﬂ(q2)+cg_F q)
25 51 (d—2)2 1 -2
n q_+(q_2)£ ( 2), g.—-_4 _9—2

4 2 q 4d—-2q+d—-3
Then there exist constants pg = po(d,q,c,8) > 0 and K; = Ki(d,q,c,0), | = 1,2, such that u :=

d

(n+Ay(a,Va+0b))"Lf, fe L, isin Whin Whiz for all p > po, and (%*) hold.

(7i) Let d > 3 and ¢ = 2. Assume that

de (d—2)(d - 3) d+3
¢>0, _21+ 1, 1 M—2P<1+ 5 %Szgj—+ §>0
or
~1<e<0, §<(1+]c)7? 1—le|—|e \\/_<2w+ )—5>0.
Then u € W?22.

Corollary 4. Let d >3, a(z) = I + c|z|2xr @ =, b € Fs. Assume that
L <ce<BE, d>y4,
1+4m and § > 0 is sufficiently small,
—-l<ec< 3, d=3.
or

4
le| is sufficiently small and 6 < 1 A R

Let d > 4. Then, for all q €]d —2,d + %[ in case of positive ¢, and for a ¢ > d — 2 sufficiently close
to d — 2 in case of negative c, we have

(n+Ay(a,Va+0b) L1 c C”, ry=1- T
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Let d =3. Then 1
(4 Ag(a, Va+b)"1L2 c O, ~ = 3

In conclusion, we mention that in Theorems 2-4 we tried to find optimal constraints on ¢ and § such
that (%), (%*) hold. The weaker result that there exist sufficiently small ¢ and ¢ such that (x), (%) are
valid (still not accessible by the existing results prior to our work) can be obtained with considerably
less effort.

We have included Appendix A to make the paper self-contained.

1. PROOF OF THEOREM 1

In what follows, we use notation
()= [ haydo. (hg) = (ha)

Define t[u, v] := (Vu-a-Vo), D(t) = W2, There is a unique self-adjoint operator A = Ay > 0 on L?
associated with the form ¢t: D(A) C D(t), (Au,v) = tu,v], u € D(A), v € D(t). —A is the generator
of a positivity preserving L contraction Cy semigroup Tf = e_tA, t>0, on L2

clos

By interpolation, T} := [T%4 [1rnr2 | 1~ determines a Cp semigroup on L" for all r € [2,00[ and

hence, by self-adjointness, for all r €]1,00[. The (minus) generator A, of T! (= e~*47) is the desired
clos

operator realization of V-a-V on L", r €]1, co[. One can furthermore show that 77} := [Tf l1iAL2 ]L1_>L1

is a Cp semigroup. This completes the proof of the assertion (i) of the theorem.
To prove (ii), we will need the following notation and auxiliary results. Define the smoothed out
matrices a® = (afj), 1<4,j<d,e>0hby

afj =0 + c]a;\;%,-a;j, |z|e = \/W
Set u =u® = (p +A‘;)—1f7 A= Ay(a®), 0 < f € CL. Clearly a° € C* and 0 < u° € W39, Denote
w = ’LU€ = vu€7

d
I =Y (Vew)|w|?2), Iy = (V]w])|w]?2),
r=1
= 2 _ _ = _ _ _
Ty o= ((z- Vo) x| 2|w]?72),  Joyoi= (@ - V]w]) x| 2w]?),  x = |oPlz]2?,
Hyy o= (x| 2w]9),  Hyoo = (032 2|w]?),  Gye = (Pl (z - w)?|w]e=2).

1. The following inequality plays an important role in the proof of Theorem 1.

Lemma 1 (Hardy-type inequality).
d? ¢ -
qu,x —(d+2)H, 2 +3H, 3 < —Jgy (HI)

Proof. Set F := |z|-'|w|?. Then

2
q 7 - 4,\2
Tl = (el Vwl?)?) = (- VF 4 xFP) = {(2- VF) +x2F) 4 2{u - VF,xF).
(HI) follows from the inequality ((z - VF)?) = |z - VF|3 > d742||F||% = %me and the equalities
ZE2 ZE4
2n - VF,XF) = —d(xF?) — (F2,2- V), 2+ Vx = 2([ — Eb) = 2x(1 - ). O

The following equalities are crucial steps in the proof of Theorem 1.
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Lemma 2 (The basic equalities).

- = d
pllw|®) + I+ clgy + (g —2)(Jg + cJgy) — c<1 + (g — 2)5>Hq7X +2¢(d — 1)Gy 2
q

420 22, o el ') = 1+ (), (BE,)

_ - d
wwl|®) + 1, + el +(q—2)(J, + ey, ) — c<1 + (¢ — 2)5>Hq,x +cdG 2
-2
+2cq

H, 2 + 4ee(|z] % (z - w)?w]?7?) = —%@ + (f, p), (BE_)

where ¢ = —V - (w|w]472),
By = 2|27t w,z - (v Vw)|w|T™2), By = —2¢(q — 2)(|2 [T (@ w)?z - V]w], [w]?70).
REMARK. Below we use the representation (BE, ) in case ¢ > 0, and the representation (BE_) in case

¢ < 0. (One could still use (BE4) for ¢ < 0 or (BE_) for ¢ > 0, but this would lead to more restrictive

constraints on c.)
Proof of Lemma 2. Set [F,G]_ := FG — GF. We multiply pu + Aju = f by ¢ and integrate:
p{|w]?) + (Agw, wlw|T72) +([V, Af)-u, wlw|T7?) = (f, ¢),
pllwl®) + Iy + eIy + (g = 2)(Jg + ey ) + [V, Agl—u, wlw]T72) = (£, ). (4)

The term to evaluate: ([V,Ag]_u,w|w|q_2> = ([VT,AZ]_u,wT|w|q_2> = Zle([vr,Ag]_u,wT|w|q_2>.
Note that

Vi, Agl- ==V - (V,a) - V, (Va0 = c|z|720mxr + (|2 720w — 2|z T iz,

([Vr, AZ]—u, wr [w]4?)
= —c<wkvi(|x|€_25Ti:Ek) + |:E|€_25ri:rkviwk,wr|w|q_2> + c((|$|€_25rk:pi — 2|x|€_4:ri:rk:1:r)wk, Vi(wr|w|q_2)>
=: Oél =+ a2,
_ 2 4 2 q—2

a; = —c{(|2|Z %0k — 2|2|Z Orixg ) wk + |2| 72 - Vw,, wp|w]?™7)

= —c(|z|7%w|?) + 2¢(|z] 7 (@ - w)?|w]|??) — e(|z|a - V], [w]h).
Then J

-2 c _
= —c<1 — T)Hq’x +2c¢G 2 + 25€<’x‘8 Hw|)

due to (2|22 Vwl, [w|?™!) =

—2p  — 2e(|z|*jw]?), and

1 — _ 1 — _ d 2 — _
La|-22 - Vlt) = —L(jw|tV - (ale]72)) = —24H, \ + 2(ja /2] |w]?) =
ay = c(|z|7?w,z - V(wlw|17%)) = 2¢(jz| 72w,z - (x - V(w]w]|"?))).

Then
ay =By + By + c{|z 7%z - V|wl, [w|T™") + (g — 2) (|| - V]w], [w]?)

d—2 2 _
By 4Byt elg—1) (TH + 2ol |w|q>).
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In view of
1
br=—5b+ co(d—2)G, 2 +dce (|| % (2 - w)?[w]T7?),

we rewrite a; + oy = ([V, AS]_u, w|w|??) in two ways:

([V, AZ]_u,w|w|q_2> =—3 — c(l + (¢ — 2)d . >H +2c(d—-1)G, 2

—26q_

2 _ _ _
ela|-Hw]?) + 8ce(|x| 2% (z - w)?|w]I7?)
and

B 1 d—2
(IV, Ad] —u, wiw|77?) = 552 - C<1 +(q — 2)T>Hq,x tedGy o

q—2 _ _ _
— 2 e(|a|Z w|9) + des (2] 28 (2 - w)?|w]17?).

The last two identities applied in (4) yield (BE; ), (BE_).

2. Next, we estimate from above the term (f, ¢) in the right-hand side of (BE,), (BE_).
Lemma 3. For each ey > 0 there exists a constant C'(g9) < oo such that
(£,0) < g0l + Jy + Hy) + Cleo) [wllg [ £lg,
where Hy = (|z|~2|w|?).
Proof of Lemma 3. Clearly,
(f,0) = (f, (~Auw)w]*7?) — (¢ = 2){f, |w|**w - V|w|) = F| + F>.
Since —Au=V-(a® —1)-w— pu+ f and
Fi= (V- (@ = 1) w, w7 f) + ((—pu + f), [w]*72f)
(we expand the first term using Va® = ¢(d + 1)z|z|72 — 2c|z||z|*x)
= c(d + 1)(|z[2%2 - w, [w] T2 f) = 2e(x|e|%e - w, [w] T (=b - w + f))
+efa] e - (@ V), [w T2 ) + (—pu+ f), [w]T72 ).

We bound from above F} and Fj by applying consecutively the following estimates:

1) (|22 - w, Jw|?=2f) <H2Hw||q 7|2|f||q

2) (x|o|Z22 - w, [w|*2 f) <H2HchTHqu |

3) (|2l %2 - (z - V), [w]t=2f) < (I,,)* leollg® 11£1la

4) (= f, lw|?"?pu) < 0.

5) (f,lw|7=2f) < [lwll§2(1F 112

6) (g — 2)(—f. [w|"*w - V]wl) < (g —2)72 |jwlls” Hqu

1)-6) and the standard quadratic estimates now yield the lemma.
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We choose g9 > 0 in Lemma 3 so small that in the estimates below we can ignore eo(1, + J, + H,).
3. We will use (BE; ), (BE_) and Lemma 3 to prove the following inequality
plwl?) +ndy < Clulli 2 fl7, €= Cleo) ()
for some n =n(q,d,eo) > 0.

Case ¢ > 0. In (BE,) we omit the term 8ce(|z|-%(x - w)?|w|?~2), obtaining
- = —2
pl|wl?) 4+ Ig + clgy + (q = 2)(Jg + cJgy) — C<1 + qu> Hgx +2c(d = 1)G 2

-2
+26q

H, 2 < B1+(f,9)

Estimating £y from above using the standard quadratic estimates,

B < 2e(fal (o - w ol (ol oo Vel < 20(G, o, )

[NIES

<l +cb7'G, s

(0 > 0), and then applying Lemma 3, we have
= = -2
) + Tyt o1 = O)Tgnc+ (g = Dy + i) = o1+ T20) Hyy c(2d = 1) = 676

q

—9 3
+2c=——Hy 2 < Cllwl|d7?| f]I2.

. . .. = = 2
L_et 0 < 0 < 1. Using the inequalities Jq <1, Jgx < 14, and ;12 (dTqux —(d+ 2)Hq7x2 + 3Hq7x3> <

Jgx, see (HI), we have
plwl®) +ndy + (=0 + g = 1)Jg + [2e(d = 1) = 7 Gy e + (M) |27 |w]?) < CllwllE7? |1 £117,

where )
4 (d -2 -2
M(x) := {(q— 1-— 9)—2<— — (d+2)x+3x2> — <1 + q—d) +2q—x}x,
q“\ 4 q q
i.e.
M(x) := [ax® + bx + co]x,
where
12 d+2 _qg—2 d? 2d
a=—(qg—1—-0), b=—-4(¢g—1-106 42— ¢0=—(@—-1—-0)+ ——1—d.
Sla-1-0) (G-1-0= 212 = Sla—1-0)+=
Elementary arguments show that the choice 6 := 2(d—1_1) is the best possible. In particular,

min M(t) = M(1) < 0.
Since —n + ¢ — 1 > 0 for all n > 0 sufficiently small, we can use J,; > (d;—f)QHq, obtaining
q J - — (d—2)* M H.<C a2 £||2
plwl®) +nJy+ | (=n+q—1) Z (1) ) Hy < Cllwlig[1f I3,

Recalling the assumption (¢ — 1) (d-2)?

—cl; >0, {1 = —M(1), it is seen that there exists n > 0 such

q2
that (—m+¢—1) (d;3)2 > cly. (5) is proved for 0 < ¢ < 7(‘1_1;2(?1_2)2.

The choice of § € [1,1 + ¢~!] leads to sub-optimal constraints on ¢ and gq.
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Case —1 < ¢ < 0. Set s:=|c|[. In (BE_), we estimate (§ > 0)
7 —1p—1
|By] < 2s(q — 2)(9‘]4»( +4770 quxz)'
By (BE_) and Lemma 3,

- - d
pl|wl®) + 1, — sl +(q—2)(J, —s(1+0)J,,)+s <1 + (¢ — 2)5> H,

q—2 1
— 923 p H‘LXZ — SdG‘LXZ — 4SGQ7X2 + 4SGQ,X3 — S(q — 2)@G

Clearly, I, — sfq,x +(¢—2)(J, —s(1+ e)jq,x) >(q—1—s—s(qg—2)(1+86))J,;. Therefore

e < Cllwld2I1E.

pllw|?) + (g—1—s5—s(¢g—2)(1+0))J,+s <1 + (g — 2)3) H,,

-2
—23q

1 _
Gy < Clulli2I£113-

H 7X2 — SdG‘LXZ — 4SGQ7X2 + 4SGQ,X3 — S(q — 2)@

q q
Using Hyy > H, 2 and Ggx < Hgy,, we obtain

pllw|®) + (g—1—s5—s(g—2)(1+0))J, +s <1 + (¢ — 2)%) Gy

La

—sdG 2 —4sG, 2 +45G, s —s(q— 2)E

e < Cllwll T2 I3

ie.

plwl) +ndg + (=n+q—1—s—s(a—2)(1+0))J, + (M| (- w)*w]"7?) < Cllwl|F2| £117,

where
d—2 1
M(x) := 1+(q—2)T+ —d—4+4x—(a -2 )x|x
i.e.
M(x) = lax* + bx + co]x,
where
1 d—2 d—2
=4, b=—-d—4— =(q—2)—— =1 —2)—.
a=2, 2(q ) . ;€0 +(q—2) p

Select 6 := 15%5. (Motivation: Below we estimate I, — sI, , + (¢ — 2)(J, — s(1 +0)J,,) > (¢ —1 -

s—s(¢g—2)1+6))J;,>(¢g—1—-s—s(qg—2)(1+90)) (d;3)2 Gy, so estimating the terms involving 6 in
_9)2 _9)2
the resulting inequality as —s(q — 2)6(dq22) Gy—(qg— 2)%(}%)(2 > (—s(qg— 2)6(dq3) —(¢— 2)%)({1, we

arrive clearly at 6 = $-9.)

Elementary arguments show that ming<;<1 M (t) = M (1) < 0. By the assumptions of the theorem,

(—n—l—q—l—s—s(q—2)(1+9))(d;22)2 +sM(1) > 0.

Thus, by J, > “H, and H, > G,

9)2
pllol®) + 1, + [(=n+a— 15— st 20 +0) 2+, < Cluly 212
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or, setting fo := [1 4+ (¢ — 2)(1 + 6)] (d;§)2 — M(1),

d—2)? 3
wllel®) + 0, + | (- +q— 1) qz) T eto| G, < Cll 21,

(5) is proved.
4. By (5), pllw||d < CHng_2|]fH2, w = Vu, € > 0, and so
IV, < Kap2lfllys Eao=C2
Again by (5), nJ; < C’||w||g_2||f||g, Jg = ;%||V|w|%||2, s0 in view of the previous inequality 7||V|Vus|2||s <
%C’Kf_z,ul_% |l f||Z. The Sobolev Embedding Theorem now yields

1

IVl < Kos~Hiflly, Ko = O b4 ORI
Since the weak gradient in LY is closed, Theorem A.2(i) (with b = 0) yields [|Vul, < Kl,u_%||f||q,
IVully < Kops 2| fllq for u= (u+ Ag)~'f, 0 < f € C°, and thus for all f € LA,
We have proved (ii).
Proof of (ii1). Let ¢ =2, d > 3. The arguments above yield (I = I5(u®))
(a) For ¢ > 0,
([V,A5] _u,w) = —f1 — cHay +2c(d — 1)Gy 2,
plwl + I + cloy — B1 — cHay +2¢(d — 1)Ga 2 = (f, =V - w)
B = —2¢(|z| ™z - w,x - (z - Vw)).

— —_ —_— 2 .
By 81 <2¢y/Go 212y < clayy +cGy 2, Gyy2 < Hay and I > (d 42) H, ., it follows that 1 — cﬁ >

0= I < KI|f3;
(b) For ¢ < 0,

(19, 45]w,w) = 32— cHax +cdCye, (=0,
pllwl3 + I + Iy — cHo y + cdGy 2 = (f,—V-w), ILh>1I,
pllwl3 + (1= [eD Iz + |e|Hay — |cldGy 2 < {f, =V - w).
Thus, by Gy,2 < Ha, < ﬁg[Q, we conclude that 1 — |¢| + |¢[(1 — d)ﬁg > 0= I(u®) < K| f]3
By passing to the limit ¢ | 0, using Theorem A.2, we obtain I(u) < K||f||2. Therefore, u € W?2?2.
The proof of Theorem 1 is completed. U

2. PROOF OF THEOREM 2

Proof of (i). A vector field b : RY — RY belongs to Fs, (A), 6 > 0, the class of form-bounded vector
fields (with respect to A = Ay), if b2 :=b-a™1-b € L{_ and there exists a constant A = A5, > 0 such
that

Ba(A + A) 2|22 < Ver.
It is easily seen that if b € Fs, then b € Fg,(A), where §; := § if ¢ > 0, and &1 = §(1 + ¢)~2 if
—1 < ¢ < 0. By our assumption, 6; < 4. Therefore, by [KiS, Theorem 3.2], =V -a-V + b -V has an
operator realization Ay(a,b) in L7, g € [ﬁ, 0 [, as the (minus) generator of a positivity preserving
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L*® contraction quasi contraction Cp semigroup. Moreover, (i + A4(a,b))~! is well defined on L? for
all p > ( ) This completes the proof of (7).

Proof of (ii). Set a° := I + c|z|7%2x ® z, |z|. :== \/|z|> + &, ¢ > 0. Put A° = A(a®). Tt is clear that
b e Fs (A%) for all € > 0.

Let 1, denote the indicator of {x € R? | |z| < n,|b(x)] < n}, and set b, := v, * 1,b € C™,
where -, is the K. Friedrichs mollifier, €, | 0. Since our assumptions on § and thus d; involve strict
inequalities only, we can select €, | 0 so that b, € Fs5 (A%), ¢ > 0, n > 1. Therefore, in view of
the previous discussion, (u + ‘/Xq(ae,bn))_1 is well defined on L4, pu > 2(;\—2), € >0, n > 1. Here
Ay(af,by) = =V -a® -V +b, -V, D(Ay(a®,by,)) = W24,

Define 0 < u = u®" := (u+ Ay(a®,b,)) " f, 0 < f € CL. Then u € W34, Set w = w™" := Vu®" and

Iy = ((Vrw)*[w|?™?),  Jg = ((VIw])*|w]*™?),
= 2 _ _ = _ _ _
Iy = (2 V) "Xz 2wl 772), gy = (@ VIw|) x|z 2 w]?72),  x = [of 2],
Hoyx = (a2l Hyo = (2Jl 2l?), Gye = (03] (@ - w)l2).
Below we follow closely the proof of Theorem 1.

1. We repeat the proof of Lemma 2, where in the right-hand side of (BE, ), (BE_) we now get an
extra term (—b,, - w, ¢):

_ _ d
pllw|?) + I+ clgy + (¢ — 2)(Jg + cJgy) — c<1 + (¢ — 2)5>Hq7x +2¢(d = 1)G, 2

" 2%5’ + 8ce{felz8(z - w)w|T2) = By + (~by - w, ) + (£, 9), (BE.4)

_ - d
'+ 0y + eyt (0 = 2Dy + ey (14 (0= D)5 ) By + 6

+ 2cq%,2Hq,X2 + dee (o] (z - w)*|w|"?) = —%ﬂz +{=bn - w,0) + (£, 9), (BE—»)
where, recall,
By = —2clals s w,z - (o Vo)|wli2), By i= —2elq — 2|7z W) V], ult).
We estimate (—by, - w, ¢) as follows.

Lemma 4. There exist constants C; (i = 1,2) such that

<_bn T w, ¢>

1 25
<lelld+3) 2006 L7 + 10D 1 + (%m—mw)

Proof of Lemma 4. For brevity, below b = b,,. We have:
(=b-w,¢) = (=Au, Jw|"*(=b-w)) + (¢ = 2){Jw|"w - V]w|, ~b - w)
=: I + F5.
Set B, := (|b- w|?|w|?7%). We have

Jq + Cullw|[ + Collw]| T2 £115.

F2 < (q - 2)Bq5 qu.
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Next, we bound F;. We represent —Au =V - (a° —1)-w — Au—b-w+ f, and evaluate

Fy=(V-(a® = 1) w, [w|(=b-w)) + (- u = b-w+ f), [w|""*(~b- w))
(we expand the first term using Va® = ¢(d + 1)|z| %2 — 2¢|z|?|z|7 1)
= c(d+ 1){|a] 2z - w, [w] 17 (=b - w))
= 2¢{x|z|7%z - w, [w]T7* (<b - w))
+ellz]7% - (2 - V), [w] T (< - w))
+ (=M —b-w+ f), w72 (=b - w)).

We bound Fj from above by applying consecutively the following estimates:

1 1

1°) (|22 - w, [w]™?(=b- w)) < G2 . Bf.
1 1 1 1
2°) <X|x|;2x cw, [w]i72(=b - w)) < G; Bi < G;XZBg.

1

7X
_1 1
3°) (|2]2%2 - (2 - Vw), [w]172(=b- w)) < I3, Bg.

)
1 q—2
4°) (=), [w]?7?(=b- w)) < 525 B llwllg™ IIflly (here 2= < g = [lunlly < (A —wg) 7 If[lq)-
5°) (b-w, |w|?7%b- w) = By.
1 =2
6°) (f, [w]7"2(=b- w))| < B [lwllg® [I£]lq-

q—2

1 a—z _
In 4°) and 6° we estimate Bg [[wllg® | flly < e0Bq + 15 lwl§*|f1I3 (0 > 0).

Therefore,

<_b - w, ¢>

1 1 _1 1 1l 1
< lel(d +3)G2 . Bi + |e|I§ Bi + By + (q—2)B¢ Ji + 0By + Ca(eo) w72 fII7-

It is easily seen that b € Fy is equivalent to the inequality
B2lel?) < 6(IVel®) +2d(lel*), @ e W

Thus,
312 32 q ¢°9 q
By < [[blw[2 2 < 0l[VIwl|z iz + Adllwlg = ==Jq + Ad[wl[g,
and then selecting £y > 0 sufficiently small, and noticing that the assumption on ¢ in the theorem is
a strict inequality, we can and will ignore below the terms multiplied by 9. The proof of Lemma 4 is

completed. O
2. We estimate (f,¢) in (BE, ), (BE_;) by an evident analogue of Lemma 3:
(f,0) < oLy + Jy + Hy + wl|d) + Cleo) |wl|d >[I F1I3

(selecting €9 > 0 sufficiently small so that we will ignore below the terms multiplied by ).
Applying Lemma 4 and the last inequality in (BE, ;), (BE_}), and using 5, < c@flm + c@‘le 2
1B5] < 2|c|(q —2) (Hj%x + 4_10_1Gq x2)’ 6 > 0, we obtain:
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If ¢ > 0, then

- - -2
pllw|®) + 1,4+ (1 — 0) I\ + (¢ — 2)(Jg + cJg ) — c(l + qu> H,\ + c(2(d —-1)— 9_1)Gq’xz

q—2
+ 2CTHq’X2 (6)

s /i 25 5
< ctd+ 026 oIt + I Tt + (T + (0= 25 )+ Calll + Calluly 1712

If -1 < <0, then (set s := |c|)

- - d
pllw|?) + 1, — sl + (g —2)(J, — s(1+0)J,,) +s <1 + (g — 2)6> H,,

q—2 1
— ZS—H%XZ — SdG‘LXZ — 4SG 2 + 48Gq X3 — (q — 2)_0G47X2 (7)
Vigh b+ a1 g4 (1 Ve
< s+ 3062 Laf + 5T T + <4 + (-5 )J + Cullwl + Collwllg £

3. Employing (6), (7) we will prove the following inequality
p(|w]?) +nJ, < Cillwl|d + Collwll§2IIFl7,  Ci=Cileo), i=1.2, (8)
for some n =n(q,d,e9) > 0.
Case ¢ > 0. In the LHS of (6) we select 6 := 2(d—1_1) (< 1). Consider two subcases:
Cl)1-— %S > 0. Arguing as in the proof of Theorem 1, using H; > G ,2, we obtain from (6):
pw|?) + Iy + (¢ — 2)J, +cM(1)H

qV' qxf

(d+3)—H2Jq )J + Cllwlld + Callwlg 2| 117,

d—2 -2
where M(1) := (¢ —1— 2(d—1—1))% -1+ £2(d - 2)) <0.
Using the quadratic estimates, we obtain (62,63 > 0)
pllwl®) + Iq + (g — 2)J, + cM(1)H,

q\f Vo

B _ _ 25 Ve
< co(d+3) 22 (0,0, + 051H,) + ch(egLLX + 0510, + <q— +(q— 2)q—> J,

4
+ Ciljwllg +C'2HwHZ_2HfH§-
We select 0 = 745, 63 =1, so
pl|w|?) + Iy + (¢ — 2)J, + cM(1)H,
V6 d—2 Vo - 25 V6
(d+3)q4 <d Tyt Hq> T g+ Jg) + (q—+(q—2)q—>Jq
+ Cillw|§ + Callw]|§2| £13-

Since 1 — Cq‘[ > 0, we have I, — Cq‘[qu (1 — cq;[),]q,
(d—2)?
2

wllewl?) + 0, + [( a1 e 6)] Hy < Calwll? + Gl 1.
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where

+c[—M() (d+ 3)\—f¥

By the assumptions of the theorem, ( —n4+q- 1) (d—;22)—2 — L1(c,d) > 0 for all n > 0 sufficiently small.

(8) is proved.
C2)1- Cq\/_ < 0. Arguing as above, we obtain

p(lw|®) + 1,4+ (g — 2)J, + (1 = 0) 1, + cM(1)H,

d—2 d = 25 1)
q{<dq2j+ - Hq>+c%(lq,x+Jq)+(q—+(q—2)M>Jq

+ Cillwl|d + Callw|| 372 £17-

<ec(d+3)

where M (1 ) = ( - 2) (d_2)2 — (1 + ﬁ(d _ 2)) < 0.
If1- 2(d iV q\[ < 0 then clearly c(1 — 57 ))[_qx Cq{[qx > c(l1- —2(d1 T~ M)Iq. By the
assumption of the theorem, 1+ c(l — (dl Ty~ T\/_) > 0, so in the previous estimate [1 + c(l — 2(d_1_1) _

D)1, > [1 4 c(1 - gbr — 2)]J,, and thus

2(d-1)
q _ _ (d B 2)2 o < q q—2 2
pljwl®) +ndg + | (=n+aq—1)— L1(c, 0)| Hy < Chjwlg + Callwl[g~[1f1ly, (9)
where
B 1 AN Vo q g% gV/3] (d - 2)?
Ll(caé)—|:_c<1_2(d_l)_ 4 >+C 1 +C(d+3)Tm+T+(q—2)T q2

+c[—M( )+ (d+3)%%]

(another representation for L;(c,)). By the assumptions of the theorem, (—n+¢—1) (d;22)2 —L1(c,0) >0
for all n > O sufficiently small. (8) is proved.
Vs Vs VoY 7
If1— (d 7 £ > 0, then clearly I + ¢(1 — 2(d1—1) - q—)IqX > Jg+c(l— ﬁ — 22) Jgx-
Arguing as above, we obtain (9) and therefore (8).

Case —1 < ¢ < 0. In the LHS of (7) we select 6 = %ﬁ. Arguing as in the proof of Theorem 1, we
obtain from (7):

pllw|®) + 1, —sI,  + (¢ —2)(J, —s(1+0)J, ) +sM(1)G, (10)
< s<d+3>qu2J2 LRt + (G2 4 (=2 B0 )+ llwl + ol 21,

where M(1) :== —d+ 1+ %W < 0. In the RHS of (7) we have used G4 > G ,2
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Further (92, 03 > 0),

plwl) + 1, = 5T, + (g = 2)(J, — s(1+6)J,.) + sM(1)Gy

q\f qV/'s

_ 25 1)
< s(d+3) 1= (0o, + 05Gy) + ST(HgLLX + 031 T,) + (q— + (g — 2)(“—2[) Jy

4
+ Ciflwlig + CszHZ_2HfH§-

-4, 63 = 1 and using the inequalities I, > I, xs Jq = Jq,x» We obtain

oty + |1 =51+ 20 1,

+ |:(q—2)<1—8<1—|—§m>> T\[—s d+3)qT\/(_S$—qué—(61—2)%/3 Jq
G,

Selecting 0y =

qVd d

+S[M<) 4 3>——] Crllwll? + Callwll 11112

By the assumptions of the theorem, 1—s (1+ %/g) >
we arrive at

a>tg JgZ T2 q

92
[l + 7T, + [( —p4q-1)l q22> ~ By(5,8)| Gy < Callwll? + Calloll2 2] £11%
where
Lg(s,é)
[(Hﬂ)ﬂq_m (H;dq?)+sqf+s<d+3>%ﬁd;12+§+<q_2>%ﬂ @
+s[—M() (d+3)%%}

By the assumptions of the theorem, ( —n+q— 1) (d;22 > 2(8,0) > 0 for all n > 0 sufficiently small.
(8) is proved.

4. The Sobolev Embedding Theorem and Theorem A.2(i) now yield (%) (cf.the proof of Theorem
1, step 4).

Proof of (iii). Let ¢ =2, d > 3. Recall that since b € Fy, then b € Fs, (A), where 01 := 6 if ¢ > 0,
and &1 := §(1 +¢)~2 if —1 < ¢ < 0 By our assumptions, §; < 1, so Ag(a®,b,) = A5 + by, - V are well
defined on L2. Following the proof of Theorem 1(iii), we obtain: for ¢ > 0

([V,A5] u,w) = —p1 — cHay + 2c(d — 1)Gyg y2,

pllwl3 + Iy + eIz — B1 — cHay + 2¢(d — DGy 2 = (=by - w, =V -w) + (f, =V - w)
B = —2¢(|z| ™z w,x - (x - Vw));
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forc <0
1
([V,A5] —u,w) = 552 —cHyy +cdGy 2, P2 =0,
plwl + L+ el — ey + cdGo s = by w0, —V -w) + (f,—V -w), L2,
llwl + (U= e s + el Ha — [eldGayz < (~bu - w,—V - w) + (f, 7 - w)

Now, applying Lemma 4 and arguing as in step 3 above, we arrive at sup.~g ,>1 I2(u*") < K|/ f[]2, and
so (by passing to the limit € | 0, using Theorem A.2, we arrive at I(u) < K||f|l2 = u € W22,
The proof of Theorem 2 is completed. O

3. PROOF OF THEOREM 3

Recall that a vector field b : R — R? belongs to Fs,(A), 1 > 0, the class of form-bounded vector
fields (with respect to A = Ap), if b2 :=b-a!-be Ll
that [[b(A + 4) 2[5z < V31

We will need the following auxiliary results. Recall: (Va); = Zle(ﬁxiaik), 1<k<ad

ioe and there exists a constant A = As; > 0 such

Lemma 5. Va = c¢(d — 1)|z| 2z € Fs(A), where § := 4(%%)2.

Proof. Tt is easy to see that b:= Va =c(d — 1)|z| 2z, a ' =1 - |2/ 2z@zand b2 :=b-a~! - b=

c+1
%Lﬂ ~2. Now, that b € F5(A) is immediate from the following Hardy-type inequality:

(c+1)(d 2)° x|~ h)3 < (Vh-a-Vh), h e WHE(RY). (%)

It remains to prove (x). Since (qﬁ, x-Vo) = —%((b, ¢), ¢ € C, we have
(0, =V - (a=1)-V¢) = c(llz- V(x| )5 — (d = V)|[]z|~"¢]3) (11)

Next, the following inequality (with the sharp constant) is valid:

eV fle> 311l (7€ DD)) (12)

where the operator D = (D [ C)5* ,, D[ O = ‘/__1(x V + V - z), is selfadjoint.

¢ JL2—L%
Indeed, by the Spectral Theorem, |[(D — )™ }|a—2 = for Re¢ = 0, and hence

\ImC \

1
lz- Vil =I5 V+ V-2 =d)ffs= (D~ V=13 )f||2 Hsz, (f € CZ).

(12) is proved.
Let ¢ > 0. By (11) and (12),

d— 2
<@—vwa—m-vwzc(£f>MM—w@ (6 )
(x) follows now from the equality (p,—=V -a-Vo) = {(¢,—V - (a—1) Vo) + (¢, —A¢p) and Hardy’s
inequality (¢, —A¢) > H\ |71¢||3. Finally, the obvious inequality (1+c){¢, —Ag¢) > (¢, —V-a-V¢)

shows that the constant in ( %) is sharp.
If -1 <c<0, (%) is a trivial consequence of Hardy’s inequality. O
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If 0 < ¢ <d—2, then Va € F5(A) with § < 4 by Lemma 5, so Ay(a, Va) is well defined for all
q c ](1 _d-1 _¢

= 1Jrc)_l, oo, see [KiS, Theorem 3.2].

If -1 < ¢<0, then Ay(a, Va) is well defined for all ¢ € ]1, oo[ by Theorem A.1 (there take b = 0)
We have proved assertion (i) of the theorem.

In order to prove assertion (7i), we will need the following result. Set

j2le = V]eP +e, e >0, x = |zl
Lemma 6. Set a°(z) := I + c|z|-%2' - z, A°

= [V VICXES [fd >4, -1 <c< P
d=3, -1<c<0, then

, or if

Va® € Fs(A®)  with § =4 d-1 e \’
0 T \d—-21+4¢)

Proof. 1. First, let ¢ > 0. Note that (a®)~!(z) = I — %L’Er%@x, (Va®) = ex(d+1—2x)|z| 2z and
(a) (Va?) - (ae)—l (Vaf) = (CX)Q[({TClX—%)]Z ’x‘—2' 2
_ 2
(b) (=V-as-Vh, h) = (Vh)2) +c(|z|72(z-Vh)?) > 4 42) (lz|72h2) + (% — (d+2)x+3x?) x|z|2h?)
h € C, see (HI).

Combining (a) and (b), we obtain that Va® € Fs(A%) for any §¢ such that

5€< [(d _42)2 + c<d£ —(d+2)x + 3X2>X] |x|_2h2>
> <<cx>2[(fiix— 2x))? ’x‘—2h2>7 he o

we can take
)2[d + 1 — 2t]2
0% := sup (ct)"ld ]

0=I=1 (1 4 ¢t) [% + ct(% — (d+2)t + 3t2>]

d—1 ¢ \?
=4 — =9
<d -21+ c> ’
which would imply that Va® € F5(A%), as claimed.
Note that % —(d+2)t + 3t? > % for all 0 <t <1 and d > 4. Thus

Let us show that

Ald + 1 — 222 ¢ (d+1—2t)t]*
§ <6 <4 =4 =0
=0 =R ([ 22(T ¥ t)? [d —2ouer L+td }
2. Let =1 < ¢ < 0. Then (—V -a®-Vh,h) > (d_42)2 (14 ¢){|z|72h?), so by (a) above Va® € Fs-(A°)
for any ¢ such that
(d—2)? —2;2 Alld+1-2x)P 5 29
3 > SN
0 L+ o)(|z["h7) 2 Tr oy X IR ) he G

we can take
5 A(d+1—2t)%t?
T oo @27 ‘
<t<1 =~ (1+c)(1 +ct)
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Finally, since 1 4+ ¢ < 1 + ct,
C 2
0<0 <4|—————— sup (d+1—2t)t|" =0.
c [(1 + C)(d — 2) 0<t£1( ) ]
O

1. We start the proof of assertion (ii) of the theorem. Let d > 4. We follow closely the proof of
Theorem 1. Set uf = (u+A4(a®,Va®))71f, 0 < f € CL. Since a® € C*°, we have 0 < u® € W37, Below

w=w =V, ¢:=-V-(ww!?),
Iy = (Vew)?|w]7%), Ty = (V]w])? w]T7?),
= 2 _ = _ _
Iy = (2 - V) Xl P wlf2),  Jgy = (@ VIw])x]a| " hw]T72),
Hyy = (X2 2w|?),  Gape = (P2 (@ w)?|w]|"?),

where y = |z|?|z|Z2. We will need

Lemma 7 (The basic equalities, non-divergence form).

d(d—1)

pllw]®) + 1, + cf%x + (¢ —2)(J, + ch7x) — Ciq H,,
2d + 1 8¢
+2c p Hyx2 — ;H%XS =B+ ([, ), (BEY)
, i} 7 d(d — 1)
ww|?) + 1, + el +(q—2)(J, +cdy,) — CTHq’X —c(d—2)G, 2
2d +1 8c _ _ 1 n
22 0 B o desol O W) = 3t (f0h (BEX)
where
By = =2c(|z|- e wya - (2 Vw)|w]97?), By = —2¢(q — 2){|z[Z (= - )’z - Vw], [w]I7?).

Proof of Lemma 7. We modify the proof of Lemma 2. In the left-hand side of (BE, ), (BE_) we have
the extra term ((Va®) - w, —V - (w|w|972)), which we evaluate as follows:

(Va*) -w, =V - (w|w|™?))

(we integrate by parts)

=c(d-1)(H,, + (||7%z - V]w)|, |w]7t) — 2Gq7X2)

+ 2¢2 ({J|Hwl ) + (ol - Viwl, [w] ™) = 4(|2]7% (2 - w)?*[w|?72)).

Note that

d—2

_ _ 1, _ 2 _
(|72 - Viwl], Jw|"™") = 7 Jle 2z Viw|?) = g Hax~ 58(\»”6!54!10!"%

- TS 1 _ —4, 4 0
(o] - Vwl, [w]® 1>=5<|wle4w'vlwlq>=—5<|w|‘1V'(<ﬂ|wle4)>=— . <|<E|€4|w|q>—56<lee6|w|q>-



WP REGULARITY OF SOLUTIONS TO KOLMOGOROV EQUATION WITH GILBARG-SERRIN MATRIX 21

Thus,
((Va) - w, =V - (wlw|?"?))
— c(d+1) (1 - g) Hyx + c<—2 + g(m 4 3)> Hyo - %Hq,xs
—2c(d —1)Gy 2 — 8ce{|z|Z%(z - w)?w|?7?).
The latter, added to the left-hand side of (BEy), (BE_) yields (BE1), (BE™). O

2. We estimate from above the term (f, ¢) in the right-hand side of (BEY), (BE"™) employing an
evident analogue of Lemma 3:

(f,¢) < eolly + Jy + Hy) + Cleo) [wlld 2|1 f1I7- (13)
Again we choose gg > 0 so small that in the estimates below we can ignore the terms multiplied by &g.

3. We will use (BE1Y), (BE™) and (13) to establish the inequality

pllwl®) +nJy < Clwli 21 fll;, € =Cleo),  n=nlq,d ) > 0. (14)
Case ¢ > 0. By the assumptions of the theorem, ¢ < % A qfﬁa. In (BEI}rd), we estimate
Br < gy + b 'Gyy2, >0,
and then apply (13) to obtain
4 - - d(d—1)
pllwl®) +1g +c(1 = 0)Igy + (g = 2)Jg + (g — 2)Jgy — ¢ q Hgx
2d +1 8c c _
+ 2c¢ p Hq7X2 — ZHq’XB — EGq’XZ < CHng 2”f”3
We exclude the case 0 < § < 1 by noting that I, > (d;22)2 Gy and f(0) = (1-0) (dﬁ)z — 1 achieves

its maximum at § = 745 > 1.
Let 6§ > 1. Clearly we have to assume now that 1 + ¢(1 — 6) > 0. Since I, + c(1 — 0)I,, >
(14+c(1—0)I; > (1+c(1—0))J; and H,,2 > G, 2 we have

- d(d—1
ulleol®) + (g — 1+ (1 — 0)Jy + (g — 2) Ty — 2 q Ju,
2d + 1 8c c _
20— —Hyp2 =~ Hyps = 5Hy e < Clull 2l1£12.

Using J, , > 545 (%Hq,x —(d+2)H, 2 + 3Hq7xg), see (HI), we obtain

. 4 (d? d(d—1)
p{lw|?) + (g =1+ c(1 = 0))Jg + c(q — 2)? ZHq,x —(d+2)H, 2 +3H,,3 ) —c p Hgx

2d +1 8¢ c
o — —H
q q7X q

+ 2c a,x® 5
Thus, by J, >

Hy e < OllwllT?|1£115-

(d-2)2

s (|z|~2|w]|?), for all > 0 sufficiently small,

9)2
ol + 0y + < [(—77 ra- 1+ e -l +cM<x>] |:c|-2|w|q> < Clluls £,
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where
4 (d? dd—1) _2d+1 8 1
Mx::[q—2—<——d+2x+3x2>— +2 x—=x2—->x|x
(0= |(a-25 (T - @+ : e
Select 6 := 4. (Motivation: estimating the terms involving 6 from below by [—c@ (d;22 2 _ g]Hq and
maximizing the latter in 6§, we arrive at § = -%5.) Then, since ¢ < qi%’ we have 1+ ¢(1 —6) > 0.

Elementary arguments show that

in M(t) = M(1
ggl() (1) <o,

and so

d—2)? N _
wlleol®) + ndy + [ (—n+ g — 1) qg) e 1, < Ol 512,

where 29 .= qt;#(d — 2). By the assumption ¢ < d;23 of the theorem, there exists 7 > 0 such that

(—n+q— 1)(‘1—;27)2 — c@rfd > 0. Thus (14) is proved.

Case —1 < ¢ < 0. By the assumptions of the theorem, —(1 +
5:=|c|. In (BE™) we estimate (8 > 0)

65| < 2s(q —2)(0J, +47071G, ),
q q,X

q g=2_g=2 \~1
mq—_lq—l—d—3) < ¢ < 0. Set

ENT,

obtaining
. _ - d(d—1)
pllwl?) + Ig — sl + (g = 2)(Jg — s(1+0)Jg,x) + STHq,x
2d + 1 8 1 _
25— Hye ;SHMS +s <d+ 2 (q— 2)E> G2 — 45Gyrs < Cllw|2|| 12
Then by the obvious inequalities I, — sly\ > (1 — s)J, and J; — s(1 4 6)J,, > (1 — s(1+ 6))J,,
d(d—1
pllef) + (g -1~ s (g - 2)(1 +6)) J + s XD g ()

2d +1 8s 1 _
— 25 7 Hy, 2+ ;Hq»@ + s <d—i— 2—(q— 2)E> G2 —4sG, 3 < CHng 2Hf|]3
Note that d(d — 1) —2(2d + 1)t + 82 >0, (d >3, 0 <t < 1), and so
d(d—1) 2d +1 8 d(d—1) 2d + 1 8
TH‘J’X — 2TH‘17X2 + qu7x3 2 TG(LX - 2TG‘1’X2 "‘l_ gGlLXB.
Therefore, we obtain from ()
did—1
plolt) + (g -1 s — s(g — 2)(1 + ) Jy + 529D,
2d +1 8s 1 _
—2&—;—Gmg+g{hﬁ+ﬂ<d+2—@—25§>GM2—%GM3§CWN2ﬂﬂﬁ
ie.
pllwl®) + [g—1—s—s(g—2)(1 +0)]J; — s(M ()|~ (z - w)*|w|*?) < Cllwl|§2|| £11%,
where

M(x) = gt [ax2 + by + co]x.
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46

Select 6 := %ﬁqfﬁg if ¢ > 2. Then M(0) = M(1) = maxo<¢<1 M(t) = 0. This is the best possible

choice of 6. (Selecting a larger 6, so that maxo<;<i M(t) < 0, decreases the term [...]J,. On the other

a:=4(¢g—2), b:=22d+1) —q<d—|—2—(q—2)i>, ¢o = —d(d—1).

hand, selecting a smaller 6, so that maxo<;<1 M (t) > 0, leads to constraints on ¢ which are sub-optimal,
i.e. which can be improved by selecting a larger 6.)
Note that ¢ — 1 — s — s(¢ — 2)(1 4+ 0) > 0 by the assumptions of the theorem. Thus,

pllwl?) + (g =1 = s —s(qg—2)(1 +0))Jy < Clwllg 2 f117,

and hence (14) is proved for g > 2.

We are left to treat the case d = 4 and ¢ = 2. Note that the proof above still works. See also a proof
of (iii) below.

4. For d > 4, the Sobolev Embedding Theorem and Theorem A.2(ii) (with § = 0) now yield estimates

(%) and convergence (3). The proof of (ii) is completed.

Proof of (ii1). Let g =2, d > 3. If ¢ < 0, then we can argue as in steps 1-3 obtaining

sup I (u®) < K||fll2, and so Iy(u) < K||flla =wuc€ w22,
e>0

Now, let ¢ > 0. By Lemma 5, Va € F5(A), § = 4(%&)2. Since ¢ < %2, we have § < 1, and
so Ag(a, Va) is well defined. By the Miyadera Perturbation Theorem and Theorem 1, D(Az(a, Va)) =
D(As) ¢ W22 and u := (u + Aa(a,Va))" f, p >0, f € L?, belongs to W22, Multiplying (u + Ag +
Va-V)u = f by ¢ := —E,,V - w, where w := Vu, E,, = (1 —m™tA)™!, m > 1, and integrating by

parts we have (omitting the summation sign in the repeated indices):
N<’w’2> +(a - Vwr, EnVwy) +(=(Via) -w, EnVwr)) +(Va-w, ¢p,) = (f, é,,), (%)

Now we pass in (x) to the limit m — oo.
Then following closely the proof of (BEE‘rd) for ¢ = 2 we obtain:

ullwl?) + I + el = 5(d = 2)(d — 3)Ha = B+ (£,6),

where I := (Vw,, Vw,), I := ((z - Vw)2|:17|_2>, Hy := (|z|2|w|?), B := —2¢(|z|*z - w,z - (z - Vw)).

Using the inequalities 8 < cly + cHa, (d_42)2 Hy < Iy, we have

o A

2 _
ulul?) + [1 :

The proof of (iii) follows.
The proof of Theorem 3 is completed. O

4. PROOF OF THEOREM 4

We follow closely the proofs of Theorems 2, 3.

Proof of (i). Tt is easily seen that if b € Fs, then b € Fs,(A), where 6; := 6 if ¢ > 0, and 6; := 6(1+c) 2

if —1 < ¢ < 0. Further, by Lemma 5, Va = ¢(d — 1)|z| "2z € Fg,(A), where & := 4(%?%)2' Now, set
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as in the formulation of assertion (i),

Vo = VoL ++V3, 0<c<d-2,
SR IV —1<c<0.

For ¢ > 0, we have by our assumption dy < 4 if ¢ > 0, so by [KiS, Theorem 3.2] the formal differential
expression —a-V?+b-V (= =V-a-V+(Va)-V+b-V) has an operator realization A,(a, Va+b) in L9,

q € [2_2—\/5, oo[, as the (minus) generator of a positivity preserving L contraction quasi contraction

Cy semigroup; moreover, (u+ Ay(a, b))~ ! is well defined on L for all u > %. In case ¢ < 0, we

apply Theorem A.1. This completes the proof of (7).

Proof of (). Let d > 4. Set a® := I + clz|72z ®z, |z|. := /|z]2 + &, ¢ > 0. Put A5 = A(a®). It is
clear that b € Fy, (A°) for all £ > 0.

Let 1,, denote the indicator of {x € R? | |z| < n,|b(x)| < n}, and set b, := v, * 1,b € C™, where 7,
is the K. Friedrichs mollifier, €, | 0. Since our assumptions on § and thus §; involve strict inequalities
only, we can select €, | 0 so that b, € Fs (A%), ¢ > 0, n > 1. Next, note that by the assumptions
of the theorem —1 < ¢ < %, and hence by Lemma 6, Va® € Fs5,(A%), € > 0. Thus, in view of the
discussion above, (1 + Ag4(a®, Va® + b,))~t is well defined on L9, p > 2(26_21), e >0, n > 1. Here
Ay(a®,Vas +b,) ==V -a® -V +(Va®) -V +b, -V, D(Ay(a?,Va + b)) = W24

Set u=u" = (u+ Ay(a®,Va® +b,))"1f,0< f € CL. Then u € W34. Below

w=w"":=Vu", ¢:=-V- (w|w|q_2),
Iy = ((Vow)*w] %), Jg o= ((V]w])*w]?7%),
Iy = (@ - V) e 2 Jw|”™2), Ty = (@ Vi)l ~w|”2),
Hop = (X2 wl?),  Goye = (el ™ (2 - w)?[w] %),
where y = |z|?|z|72.

1. We repeat the proof of Lemma 7, where in the right-hand side of (BEY), (BE™) we now get an
extra term (—b,, - w, ¢):

7 = dd—1
pllwl?) + 1 +elyy + (g = 2)(Jg +edgy) — C%me
2d + 1 8c N
+2c q H‘LX2 - ?H%XS = 51 + <_bn T w, ¢> + <f7 ¢>7 (BE_S[))

d(d—1)

pllw|®) + 1,4+l + (¢ —2)(J,+cJ, ) —¢ p

H,\ —c(d=2)Gy,»

q,

2d +1 8c _ - 1 n
o Hope = Hypo = dee(lel®(@ - w)* ") = =3+ (bu - w, @) +(f,),  (BEY)

+ 2c¢

where

By = —2e{|a e w,x - (2 V) wlT7%), By = —2e(q — 2)(J2lTt (2 - w)’z - Viw], [w]f7?).
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2. By Lemma 4,

< e \(d+3)q\/_

q\f

J2+H

2
¢*5 Vs
)J T Gl + Callwl 221172

Iz 2 1Y
b+ (-9t
Next, by an evident analogue of Lemma 3,

(f,0) < oIy + Jy + Hy + w]|d) + Cleo) Jwl|§2(IFII7-

Again we choose €y > 0 so small that in the estimates below we can ignore the terms multiplied by &o.
Applying t}le last two inequalities in (BEI}f}b), (BEE%), and using B, < efl,, + c@‘levxz, 18,] <
2lcl(q — 2)(0‘]4»( + 4_19_1Gq XQ), we obtain:

If ¢ > 0, then:
- dd—1
pll") + I, + L= 0) T, + (g = 200, + ey ) — P,
2d+1 8
+ 2¢ 7 Hq X2~ ?cH 3 — qu’XQ (15)
Vo Vo oL %5 Vo
< ol + 9002 L7+ D IR IE 4 <q4 + (-5 )J + Cullwlg + Callwllg 11
If -1 < <0, then (set s :=|c|):
- = d(d—1
pll") + 1, = Ty + (= D, = s +0),,0 + 55
2d+1 8s 1
—2s . H,. 2+ ;H%Xa +s <d +2—(q— 2)E> G2 — 4sG 3 (16)
Vi 4o f 25 %
< s(d+ 3002 LIF + 5T TE I+ (% +a-25° )J + Cillw]g + Collwllg =112
3. We will use (15), (16) to prove the following inequality
pllwl) +nJ, < Crllwlg + Collw|g 2|2, Ci=Cilzo), i=1,2 (17)

for some n = n(q,d,ep) > 0.
Case ¢ > 0. In (15), select § = 745 > 1. By the assumptions of the theorem, 1+ ¢(1—6) > 0. Since

I+ c¢(1—0)Ig > (1+¢(1—0))I; and H, 2> > G, 2, we have

q,Xx»
pul®) + 1+ (1 = 00Ty + (= 20, + ) — XL,

2d +1 8¢ c
. Hy 2 — —H \3 — §Hq7x2

qV'o q\f L <q25 q_\2/3>

+ 2c¢

(d+3)—G2 2Jq [quq T+(q—2)

Arguing as in the proof of Theorem 3, we arrive at
plw|®) 4+ (1 +c(1 = 0)) 1y + (¢ — 2)J, + cM(1)H,
qV'o qV/s -1

26 \/_
< cd+ D2 Gh ot + L} + (L0 4 =T ), + Cullwl + Callwll 211

Jq + Cillw|| + Collw]| T2 £
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where M (1) = —2([1;—22)2. Using I, > qu H, > G, 2 in the RHS, and applying the standard quadratic
estimates, we obtain (3,03 > 0),

pllwl®) + (1 + (1 = 0) Iy + (g = 2)J, + eM(1)H,

V3 X,

< e+ 3T 0Ty + 07 Hy) + T Oal 057 ,) + <ﬁ+(q—2) f)]q

4
+ Crllwl|d + Collw|| 32| £113-

We select 6 = 745, 63 = 1. By the assumptions of the theorem, 1 + c(l 0 — ‘%/3) > 0, so that

(1+c(1—6 —T\/_) > (1+c(1 q\/_))J Thus, we arrive at
. - LAV oo g ¢ aVo
put’) + | 1+c<1 0T ) —eld+ L - T - 25 g,
qVod—2 _
n [aM( ) - c<d+3>—T}Hq < C1flwllt + Callwl 22 2.

So, by J, = =2 H,,

d—2)? _

) gy + |t = D2 = e )| #, < Callwly + Calluly 2112
where

b, §) g Vo o a5, aVE](d—2)?

£y (0,5)—[ (1 0 5 >+c(d+3) 1 2+ 1 +(g—2) 5 7

qVod—2

—i—c[M() (d+ 3)4 q}

By the assumptions of the theorem, ( —n+q-— 1) (d;22 & (¢c,0) > 0 for all n > 0 sufficiently small.

(17) is proved.
Case —1 < ¢ < 0. Following the proof of Theorem 3, we obtain from (16)

dd—1
pflwl?) + (1= 8)Ig + (g — 2)(1 = s(1 +0)) J; + s ( )Gq,x
2d+1 1
- 23T+Gq,x2 + %SGtLXS +s (d +2-(¢— 2)@) Gy = 48Gg s

5 Vis 4 (¢ V5
< s+ 9 2Gh i + 5T+ (T 4+ g - DT )y + Cullully + Cllwly 21

1

— 1
> Iy 5L+ Jg) 2 13 J§
d(d—1)

In the RHS, we use —*5zJ; > G

(d 2) ax* 1g

pllol®) + (1= )T, + (g~ 2) (1 - s(1+0)) J, + s

G‘LX

2d +1 8s 1
_ ZSTG%XZ + ?G‘LXS + S <d+ 2 — (q — 2)@

és(d+3)q\2/gdz2Jq+sqf(Iq+Jq)+< za+( )q\[>

) Gz — 4Gy s

Jg + CullwlE + Cellw|g2 )1 £117-
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Arguing as in the proof of Theorem 3, and selecting 6 := 1 %5 qf_;zg, we arrive at
pf|w|?) + (1= 8)Ig + (g — 2)(1 = s(1 +0)) J,
Vo Vo 25 Vo
< s+ 9T o 20 0+ (G + =252 ) dy+ Gl + ool 211

By the assumptions of the theorem, 1 — s( T\/_) 0. Therefore, since J; < I,

Vo q Vo g%

plul®) + |a =1 = s = s(g = (1 +6) - s(d+3) 57 Lo = T2 - L2 (-T2,

< Cillw||§ + Collwl|g |1 f17-

By the assumptions of the theorem, q—1—s—s(q—2)(1+9)—8(d+3)%3ﬁ—sqzﬁ—q%‘s—(q 2) 42 avs -,
Hence (17) is proved.
4. For d > 4, the Sobolev Embedding Theorem and Theorem A.2(7i) now yield (xx). We have proved
(id).
Proof of (iii). Let ¢ =2, d > 3. If ¢ < 0, then we can argue as in steps 1-3 obtaining
sup I(u®") < K| fll2, andso L(u) < K|flla = uec W2

e>0mn

Now, let ¢ > 0. We have b+ Va € Fs,(A), v/ := v +29=} 15 (cf. beginning of the proof). By the

assumptions of the theorem, do < 1, and so As(a, Va) is well defined. By the Miyadera Perturbation
Theorem and Theorem 1, D(As(a,Va + b)) = D(A3) € W22, and u := (u + As(a,Va + b))~ f,
u >0, f € L?, belongs to W22, Multiplying (¢ + Az + (Va +b) - V)u = f by ¢, := —E,,,V - w,
En = (1 —=m™'A)~!, m > 1 and integrating by parts we have (omitting the summation sign in the
repeated indices):

wlwl) + {a - Vwy, EnVwy) + (~(Vra) - w, EnVwy)) + (Va-w,¢,) = (=b-w,ém) + (f,0m), (%)
Now we pass in () to the limit m — co. We obtain an analogue of (BEﬁ_‘%b) for g = 2:
-
wlwl®) + I + el = 5(d = 2)(d = 3)Hy = B+ (=b-w, ) + (f, =V - w)

where I := (Vw,, Vw,), I = ((z - Vw)zla;\_2> Hy = (|z|2|w|?), 8 := —2¢(|z|™ 2 - w,x - (z - Vw)).
Using the inequalities 8 < cly + cHo, (- 2) Hsy < I, we have

)+ 1= 2o (14 2ol < (b0 + 41,00,

(d—2)? 2
so by
1) 2 d—2 0
\(b'w,¢>’§0(d+3)§ <d—2j2+ 5 Hq>+0§(f2+<]2)+5j2 (Jo < Ip)
d+3
< 20\/5m +C\/g+5 IQ
Therefore,

p{|w]?) + - <1 + W>C—CI<2B + 1) —5] I < {f, ),

e
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where the coefficient of I5 is positive by the assumptions of the theorem. The proof of (7ii) follows.

The proof of Theorem 4 is completed. U

APPENDIX A.

Theorem A.1. Letd >8. Leta =1+ clz|2z®z, —1 <c<0,a =1+clz|?2z®z, |22 =
|z|> + &, 6 > 0. Seta, :=a"", &, | 0. Letb € Fs(A), 0 < § < 4. Let 1,, denote the indicator of
{z € RY| |z| < n,|b(z)] < n}, and set by, := 7., * 1,b, where . is the K. Friedrichs mollifier, ¢, | 0.

Then =V -a -V + (Va+b) -V has an operator realization Ay(a,b) in L, r > 2%[, as the (minus)

generator of a positivity preserving, L contraction, quasi contraction Cy semigroup on L", and, for
_2
each r > o5
e—tAT-(a,Va-‘rb) — s-L"- lim e—tAT-(a,Van-l—bn)‘
n—oo

Proof. We modify the proof of [KiS, Theorem 3.2] replacing b,, there with Va,, + b,.
In comparison with [KiS, Theorem 3.2], essentially we have an extra term (Va, - Vv,v" 1) to deal
with. Since Va,, = ¢(d — 1)|z|2 2z + 2cz, |z 2z, we have (write & = ¢,,)

(Va, - Vo, o1 = ¢(d — 1){|z| 722 - Vo, o™ 1) + 2ce(|z|T 4z - Vo, 0" 1),

and 49
Sl Vo,0 ) = (el - Vo3, 05) = ~ 2l ) — eflals ),
r —4 r—1y _ —4 r T __d—4 —4. 7\ 5. 2/.]—6, 7
Sellzle e - Vo, o) = ef|z] e - V2, 02) = ———e(fa] 0" = 2e7(|z] 7).
Thus, since ¢ < 0 and v > 0, we have (Va, - Vv,v" 1) > 0 for all d > 3. This inequality allows us to
discard the extra term.

The rest of the proof repeats [KiS, Theorem 3.2]. O

Theorem A.2. Letd >3. Leta=1+clz|2r @1, a° =+ clz|-?2 @z, |2]? = |2]* + &, ¢ > 0. Set
an = a", e, 1 0. Let b € Fg, let b, ’s be as in Theorem A.1.

(i) Assume that ¢ > d—2, d > 4, ¢, § satisfy the assumptions of Theorem 2(ii), or ¢ = 2, d > 3,
c, § satisfy the assumptions of Theorem 2(iii). Then (u+ Ag(a,b))™t, (1 + Ag(an, b)), 1> w,, are
well defined, and

(1 + Ag(a,0)) ™! = s-L-lim(p + Ag(an, bn)) ™

Here Ag(an,by) = =V - an -V + by -V, D(Ag(an, b)) = W4,

(i) Assume that ¢ > d—2, d > 4, ¢, ¢ satisfy the assumptions of Theorem 4(ii), or ¢ =2, d > 3,
c < 0, § satisfy the assumptions of Theorem 4 (iii). Then (u+Aq(a, Va+b))~1, (u+Aq(an, Van+b,)) 71,
> wg, are well defined, and

(1 + Agla, Va+ b))~ = s-LO-Tim(p + Ag(an, Van + b))~
Proof. We modify the proof of [KiS, Theorem 3.2] but will work with resolvents instead of semigroups.

To prove (i), set 8, == [1V (14 ¢)72]8, b:=b, by, := by,.
To prove (i), set

\/5*._ \/(_5+2%1—_T_C, O<e<d-2,
] A+, —l<e<.
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and b := b+ Va, by := b, + Va,.
1. First, prove (i) and (i) for ¢ > 0. Set A" = [~V -a,,-V | C]$%,. Then b € Fs,(A), b, € Fs,(A")
(for details see the proofs of Theorems 2 and 4, respectively), where, by our assumptions, J, < 4.

Therefore, by [KiS, Theorem 3.2] (i 4+ Agy(a,0))™", (4 4 Ag(an, b))t ¢ > ﬁ, [ > wy, are well

defined, and lim,, ||(x + Ag(a, b)) f — (4 Ag(a,b,)) " fllq = 0, f € L9. Thus, it suffices to show that
lim || (e + Ag(a,00) 71 f = (1 + Ag(an, ba)) " fllg = 0.

(a) Fix f € L® N L2. Set u, := (u+ Ag(a,b,))"1f > 0, @y == (1 + Ag(an,by))"'f > 0. Let
v = Cu, > 0, where ¢ = ((R), 0 < ¢ <1, ¢ = 0 on an open ball of radius ~ R, ( = 1 on the
complement of an open ball of radius ~ 2R, is defined in [KiS, proof of Theorem 3.2, step 1]. Note that
(C(p+ Mg, b)) um, 31y = (C(p + A + by, - V), v91) according to [KiS, proof of Theorem 3.2, step
1], and hence
(Clu+ At by - g, 0771 ) = (Cf, 077,
Now, proceeding as in [KiS, proof of Theorem 3.2, step 1], we arrive at the following. For every e > 0
there exists R > 0 such that
Cunllg <e, n>1, p>uw,.
Similarly,
ICinlly <& n>1, p>w,
(b) Set g, := uy, — Uy,. For the R determined above, set v := (g,,, where 0 < ( < 1, ( =1 on an open
ball of radius ~ R, ¢ = 0 on the complement of an open ball of radius ~ 2R, is defined in [KiS, proof
of Theorem 3.2, step 2]. Subtracting the equations for u, and ,, we have

<C(,u +A+b,- V)g — (V- (a—ap) - Vﬂn,v|v|q_2> =0.
Arguing as in [KiS], we arrive at the inequality
pllolld < Mg, d. 6B fll& +[(CV - (a — an) - Vin, vfv]T7%)].
To show that ((u, — @,) — 0 strongly in L? as n — 0, it remains to prove that lim,, |Z| = 0, where
Z = {(a — an) - Vi, V(¢v[v|772)). The latter is possible due to the bounds |[Vun| « < K| £l
|Viy| g« < K| fllq (cf. the proof of Theorem 3 (steps 1-3) for (i), the proof of Theorergézl (steps 1-3)
for (z’z’)l)iTQIndeed,
Z = q{¢" V¢ (a— an) - Viin, gnlgn| ") + (Vgn - (@ = an) - Viin, (U|gn|"~)
+ (2= 3)(Vgnl - (@ = an) - Viin, ("galgn|”™)
=qZ1+ Zo+ (q — 3)Zs,

and (g, := % > 2)

’Zl‘ SQHVC'(CL_an) qh Vﬂn Qs gn”ggly

22| <I[Vgn - ¢(a = an) - Vin|1]|gnllZ?,
1Z5] <[V gl - C(a — an) - V|l llga ]l %2,
IVIgnlllq. <IVgn

0o < 2K fllgr sup [C(as; — )] o — 0 as n 0.

qx —
Z?]
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Thus, by Holder’s inequality and |a;; — af;| < celz|z2 1 0 a.e.as n — oo,
lim|Z] = 0.
n

It follows that ¢(up, — ) — 0 in LY.
Combining the results of (a) and (b), we obtain the required.

2. To prove (ii) with ¢ < 0, we repeat the proof above but taking into account the proof of Theorem
Al O
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